Photonic-crystal distributed-feedback quantum cascade lasers

Because of an intrinsically low linewidth-enhancement factor, the quantum cascade laser (QCL) is especially favorable for patterning with a recently proposed 2-D photonic crystal (PC) lattice that substantially increases the device area over which optical coherence can be maintained. In this work, we use an original time-domain Fourier-transform (TDFT) algorithm to theoretically investigate the beam quality and spectral purity of gain-guided PC distributed-feedback (DFB) quantum cascade lasers. The conventional 1-D DFB laser and also the angled-grating DFB (/spl alpha/-DFB) laser are special cases of the PCDFB geometry. By searching the parameter space consisting of tilt angle, coupling coefficients, stripe width, and cavity length, we have theoretically optimized the PCDFB gratings for QCL gain regions. At a wavelength of 4.6 /spl mu/m, the simulations project single-mode emission from stripes as wide as 1.2 mm, and etendues of no more than three times the diffraction limit for 2-mm stripes. We also examine the tolerances required for single-mode and high-brightness operation. Comparisons are made to analogous simulations of a-DFB QCL lasers.

[1]  Christopher L. Felix,et al.  Role of internal loss in limiting type-II mid-IR laser performance , 1998 .

[2]  Carlo Sirtori,et al.  Distributed feedback quantum cascade lasers , 1997 .

[3]  Christopher L. Felix,et al.  Far-field characteristics of mid-infrared angled-grating distributed feedback lasers , 2000 .

[4]  M. Toda Proposed cross grating single-mode DFB laser , 1992 .

[5]  Sang K. Sheem,et al.  Two‐dimensional distributed‐feedback lasers and their applications , 1973 .

[6]  I. Vurgaftman,et al.  Optical-pumping injection cavity (OPIC) mid-IR "W" lasers with high efficiency and low loss , 2000, IEEE Photonics Technology Letters.

[7]  James J. Coleman,et al.  Two-dimensional rectangular lattice distributed feedback lasers: A coupled-mode analysis of TE guided modes , 1995 .

[8]  Nikolai N. Ledentsov,et al.  InGaAs-GaAs quantum-dot lasers , 1997 .

[9]  Jerry R. Meyer,et al.  Type‐II quantum‐well lasers for the mid‐wavelength infrared , 1995 .

[10]  A. Maradudin,et al.  Photonic band structure of two-dimensional systems: The triangular lattice. , 1991, Physical review. B, Condensed matter.

[11]  Jonathon T. Olesberg,et al.  Differential gain, differential index, and linewidth enhancement factor for a 4 μm superlattice laser active layer , 1999 .

[12]  M. Osiński,et al.  Linewidth broadening factor in semiconductor lasers--An overview , 1987 .

[13]  D. Welch,et al.  Theory of grating-confined broad-area lasers , 1998 .

[14]  Goro Sasaki,et al.  Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure , 1999 .

[15]  Federico Capasso,et al.  Single-mode tunable, pulsed, and continuous wave quantum-cascade distributed feedback lasers at λ≅4.6-4.7 μm , 2000 .

[16]  Volker Wittwer,et al.  A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure , 2000 .

[17]  J. Rogers,et al.  Emission characteristics of two-dimensional organic photonic crystal lasers fabricated by replica molding , 1999 .

[18]  Govind P. Agrawal,et al.  Fast‐Fourier‐transform based beam‐propagation model for stripe‐geometry semiconductor lasers: Inclusion of axial effects , 1984 .

[19]  T. L. Myers,et al.  Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission , 2002 .

[20]  Dietrich Marcuse,et al.  Computer simulation of laser photon fluctuations: Theory of single-cavity laser , 1984 .

[21]  Alan H. Paxton,et al.  Filament formation in semiconductor laser gain regions , 1991 .

[22]  B. Pezeshki,et al.  400-mW single-frequency 660-nm semiconductor laser , 1999, IEEE Photonics Technology Letters.

[23]  Christopher L. Felix,et al.  Mid-infrared angled-grating distributed feedback laser , 2000 .

[24]  A. Stintz,et al.  Gain and linewidth enhancement factor in InAs quantum-dot laser diodes , 1999, IEEE Photonics Technology Letters.

[25]  H. Kogelnik,et al.  Coupled‐Wave Theory of Distributed Feedback Lasers , 1972 .

[26]  T. Tanbun-Ek,et al.  Gain characteristics of 1.55-μm high-speed multiple-quantum-well lasers , 1995, IEEE Photonics Technology Letters.

[27]  Igor Vurgaftman,et al.  Photonic-crystal distributed-feedback lasers , 2001 .

[28]  Andrew Sarangan,et al.  Spectral properties of angled-grating high-power semiconductor lasers , 1999 .

[29]  M. L. Tilton,et al.  Modeling multiple-longitudinal-mode dynamics in semiconductor lasers , 1998 .

[30]  D. Marcenac,et al.  Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model , 1994 .

[31]  Carlo Sirtori,et al.  Continuous wave operation of quantum cascade lasers based on vertical transitions at λ=4.6 μm , 1996 .

[32]  Federico Capasso,et al.  Single-mode, tunable distributed-feedback and multiple-wavelength quantum cascade lasers , 2002 .

[33]  Christopher L. Felix,et al.  Virtual mesa and spoiler midinfrared angled-grating distributed feedback lasers fabricated by ion bombardment , 2001 .

[34]  C. Gmachl,et al.  Quantum cascade lasers with low-loss chalcogenide lateral waveguides , 2001, IEEE Photonics Technology Letters.

[35]  A. Cho,et al.  Single-mode tunable quantum cascade lasers in the spectral range of the CO2 laser at /spl lambda/=9.5-10.5 μm , 2000, IEEE Photonics Technology Letters.

[36]  N. Dutta,et al.  Linewidth enhancement factor in strained quantum well lasers , 1990 .

[37]  Federico Capasso,et al.  Continuous-wave and high-power pulsed operation of index-coupled distributed feedback quantum cascade laser at λ≈8.5 μm , 1998 .

[38]  Govind P. Agrawal,et al.  Nonlinear mechanisms of filamentation in broad-area semiconductor lasers , 1996 .

[39]  Byoung-Sung Kim,et al.  An efficient split-step time-domain dynamic modeling of DFB/DBR laser diodes , 2000, IEEE Journal of Quantum Electronics.

[40]  Christopher L. Felix,et al.  Mid-infrared photonic-crystal distributed-feedback laser with enhanced spectral purity and beam quality , 2001 .

[41]  David F. Welch,et al.  Spontaneous filamentation in broad-area diode laser amplifiers , 1994 .

[42]  Kim,et al.  Two-dimensional photonic band-Gap defect mode laser , 1999, Science.

[43]  M. Beck,et al.  Bound-to-continuum and two-phonon resonance, quantum-cascade lasers for high duty cycle, high-temperature operation , 2002 .