Topology of the pyroxenes as a function of temperature, pressure, and composition as determined from the procrystal electron density

Abstract The distribution of bonds associated with the M2 sites in various well-ordered pyroxene minerals is determined using a topological analysis of electron density in the manner proposed by Bader (1998). Each M2 atom is bonded to 2 O1 and to 2 O2 atoms, and to zero, one, two, or four bridging O3 atoms. Each of the symmetries displayed by pyroxenes have their own bonding systematics, and each pyroxene-to-pyroxene phase transition involves a change in bonding to M2. As a function of temperature or pressure, the bonding changes appear as a well-defined sequence of steps that can be related to the degree of distortion from the ideal closest packing of anions. It is proposed that the condition at which an individual phase transition occurs is related to M2-Si repulsion through a shared edge. The bonding analysis should provide a qualitative means to interpret the behavior of all pyroxene structures over T, P, and x, and may guide the interpretation of the changes in properties observed by techniques other than X-ray diffraction, such as Raman spectroscopy.

[1]  R. Downs,et al.  Model pyroxenes I: Ideal pyroxene topologies , 2003 .

[2]  I. Brown Topology and Chemistry , 2002 .

[3]  K. Rosso,et al.  A comparison of procrystal and ab initio model representations of the electron-density distributions of minerals , 2002 .

[4]  G. André,et al.  The crystal and magnetic structure of Li-aegirine LiFe3+Si2O6: a temperature-dependent study , 2001 .

[5]  R. Downs,et al.  Quantifying distortion from ideal closest-packing in a crystal structure with analysis and application. , 2001, Acta crystallographica. Section B, Structural science.

[6]  S. Y. Wang,et al.  Pressure-induced phase transitions in CuGeO3 from Raman spectroscopic studies† , 2001 .

[7]  M. Boisen,et al.  A computational quantum chemical study of the bonded interactions in earth materials and structurally and chemically related molecules , 2001 .

[8]  R. Angel,et al.  Displacive phase transitions in C-centred clinopyroxenes: spodumene, LiScSi2O6 and ZnSiO3 , 2000 .

[9]  M. Tribaudino A transmission electron microscope investigation of the C2/c→ P21/c phase transition in clinopyroxenes along the diopside-enstatite (CaMgSi2O6-Mg2Si2O6) join , 2000 .

[10]  M. Reehuis,et al.  A SINGLE-CRYSTAL NEUTRON-DIFFRACTION INVESTIGATION OF DIOPSIDE AT 10 K , 2000 .

[11]  C. Prewitt,et al.  Chain and Layer Silicates at High Temperatures and Pressures , 2000 .

[12]  Howard,et al.  The use of CCD area detectors in charge-density research. Application to a mineral compound: the alpha-spodumene LiAl(SiO3)2. , 1999, Acta crystallographica. Section B, Structural science.

[13]  M. Eberhart WHY THINGS BREAK , 1999 .

[14]  P. Conrad,et al.  A new pyroxene structure at high pressure: Single-crystal X-ray and Raman study of the Pbcn-P21cn phase transition in protopyroxene , 1999 .

[15]  R. Hazen,et al.  Compressibility mechanisms of alkali feldspars: New data from reedmergnerite , 1999 .

[16]  R. Angel,et al.  High-pressure P21/c-C2/c phase transitions in clinopyroxenes: Influence of cation size and electronic structure , 1998 .

[17]  R. Bader,et al.  A Bond Path: A Universal Indicator of Bonded Interactions , 1998 .

[18]  R. Liebermann,et al.  Sound velocities of polycrystalline MgSiO3-orthopyroxene to 10 GPa at room temperature , 1998 .

[19]  T. Armbruster,et al.  The temperature-dependent P2 1 /c-C2/c phase transition in the clinopyroxene kanoite MnMg[Si 2 O 6 ]; a single-crystal X-ray and optical study , 1997 .

[20]  R. Angel,et al.  The transition of orthoferrosilite to high-pressure C2/c clinoferrosilite at ambient temperature , 1997 .

[21]  Philip Coppens,et al.  X-ray charge densities and chemical bonding , 1997 .

[22]  M. Eberhart The metallic bond: Elastic properties , 1996 .

[23]  D. Allan,et al.  The structural pressure dependence of potassium titanyl phosphate (KTP) to 8 GPa , 1996 .

[24]  S. Ghose,et al.  High temperature single crystal X-ray diffraction studies of the ortho-proto phase transition in enstatite, Mg2Si2O6 at 1360 K , 1995 .

[25]  R. Angel,et al.  The structure of high-pressure C2/c ferrosilite and crystal chemistry of high-pressure C2/c pyroxenes , 1994 .

[26]  R. Angel,et al.  A compressional study of MgSiO 3 , orthoenstatite up to 8.5 GPa , 1994 .

[27]  R. Angel,et al.  Stability of high-density clinoenstatite at upper-mantle pressures , 1992, Nature.

[28]  M. Kitamura,et al.  Phase transition in Ca-poor clinopyroxenes , 1991 .

[29]  M. Kanzaki Ortho/clinoenstatite transition , 1991 .

[30]  V. Schomaker,et al.  Enstatite, Mg2Si206: A neutron diffraction refinement of the crystal structure and a rigid-body analysis of the thermal vibration , 1986 .

[31]  V. Schomaker,et al.  Enstatite, Mg2Si2O6: A neutron diffraction refinement of the crystal structure and a rigid-body analysis of the thermal vibration , 1986 .

[32]  M. Hirano,et al.  A high temperature transition in MgGeO3 from clinopyroxene (C2/c) type to orthopyroxene (Pbca) type , 1985 .

[33]  Y. Ohashi Polysynthetically-twinned structures of enstatite and wollastonite , 1984 .

[34]  T. Murakami,et al.  X-ray studies on protoenstatite , 1984 .

[35]  Y. Takéuchi,et al.  Electron-density distributions of three orthopyroxenes, Mg2Si2O6, Co2Si2O6, and Fe2Si2O6 , 1982 .

[36]  F. Escudero,et al.  Atoms in molecules , 1982 .

[37]  T. Murakami,et al.  The transition of orthoenstatite to protoenstatite and the structure at 1080 °C , 1982 .

[38]  N. Ishizawa,et al.  High temperature single crystal X-ray diffraction experiment , 1979 .

[39]  N. Morimoto,et al.  The crystal structure of the pyroxene-type MnSiO3. , 1979 .

[40]  C. Choi The Crystal Structures , 1977 .

[41]  L. Finger,et al.  The thermal expansion of diopside to 800 degrees C and a refinement of the crystal structure at 700 degrees C , 1976 .

[42]  C. Prewitt,et al.  Orthoferrosilite : High-temperature crystal chemistry , 2022 .

[43]  Y. Nakajima,et al.  Electrical Resistivity of Laves Phase Compounds Containing Transition Elements : I. Fe_2A (A=Sc, Y, Ti, Zr, Hf, Nb, and Ta)(Physics) , 1976 .

[44]  S. Kirby,et al.  The orthoenstatite to clinoenstatite transformation by shearing and reversion by annealing: Mechanism and potential applications , 1975 .

[45]  Prrnn R. Busncx High Resolution Electron Microscopy of Enstatite. II: Geological Application , 1975 .

[46]  J. Smyth Experimental Study on the Polymorphism of Enstatite , 1974 .

[47]  J. Smyth The high temperature crystal chemistry of clinohypersthene , 1974 .

[48]  J. Papike,et al.  High-temperature crystal chemistry of acmite, diopside, hedenbergite, jadeite, spodumene, and ureyite , 1973 .

[49]  J. Papike,et al.  Pyroxenes: comparisons of real and ideal structural topologies , 1973 .

[50]  N. Morimoto,et al.  Domain structure of pigeonite and clinoenstatite , 1969 .

[51]  J. J. Papike,et al.  CRYSTAL-CHEMICAL CHARACTERIZATION OF CLINOPYROXENES BASED ON EIGHT NEW STRUCTURE REFINEMENTS' , 1969 .

[52]  R. Willett,et al.  A refinement of the crystal structure of KSCN , 1968 .

[53]  W. Bragg,et al.  The crystal structures of minerals , 1965 .

[54]  R. Howie,et al.  Rock-forming minerals , 1962 .

[55]  N. Morimoto,et al.  The crystal structures of clinoenstatite and pigeonite , 1960 .

[56]  J. Smith The crystal structure of proto‐enstatite, MgSiO3 , 1959 .

[57]  N. F. M. Henry X-Ray Studies on Polymorphism , 1951, Nature.

[58]  H. Lipson Crystal Structures , 1949, Nature.

[59]  В. E. Warren,et al.  1. The Structure of Enstatite MgSiO3 , 1930 .

[60]  Lr Znanc,et al.  Single-crystal compression and crystal structure of clinopyroxene up to 10 GPa , 2022 .