On anelliptic approximations for qP velocities in VTI media
暂无分享,去创建一个
[1] L. Thomsen. Weak elastic anisotropy , 1986 .
[2] Sergey Fomel,et al. A variational formulation of the fast marching eikonal solver , 2000 .
[3] R. J. Castle,et al. A theory of normal moveout , 1994 .
[4] Tariq Alkhalifah,et al. Velocity analysis for transversely isotropic media , 1995 .
[5] Gerard T. Schuster,et al. First‐arrival traveltime calculation for anisotropic media , 1993 .
[6] R. G. Pratt,et al. Traveltime tomography in anisotropic media—I. Theory , 1992 .
[7] P. Podvin,et al. Finite difference computation of traveltimes in very contrasted velocity models: a massively parallel approach and its associated tools , 1991 .
[8] Marko Subasic,et al. Level Set Methods and Fast Marching Methods , 2003 .
[9] Gerard T. Schuster,et al. Finite‐difference solution of the eikonal equation along expanding wavefronts , 1992 .
[10] Herbert F. Wang,et al. Ultrasonic velocities in Cretaceous shales from the Williston basin , 1981 .
[11] R. Stolt. MIGRATION BY FOURIER TRANSFORM , 1978 .
[12] Seongjai Kim. On eikonal solvers for anisotropic traveltimes , 1999 .
[13] William W. Symes,et al. Upwind finite-difference calculation of traveltimes , 1991 .
[14] Tariq Alkhalifah,et al. Acoustic approximations for processing in transversely isotropic media , 1998 .
[15] Alex M. Andrew,et al. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .
[16] S. Fomel,et al. Fast-marching eikonal solver in the tetragonal coordinates , 1998 .
[17] P. Fowler. Practical VTI approximations: a systematic anatomy , 2003 .
[18] Seongjai Kim. 3-D eikonal solvers: First-arrival traveltimes , 2002 .
[19] J. Sethian,et al. 3-D traveltime computation using the fast marching method , 1999 .
[20] J. Gaiser,et al. Anisotropic velocity analysis for lithology discrimination , 1989 .
[21] Alexander Vladimirsky,et al. Ordered Upwind Methods for Static Hamilton-Jacobi Equations: Theory and Algorithms , 2003, SIAM J. Numer. Anal..
[22] Shunhua Cao,et al. Finite-difference solution of the eikonal equation using an efficient, first-arrival, wavefront tracking scheme , 1994 .
[23] An Eikonal Solver in Tilted TI media , 2002 .
[24] J. Sethian,et al. Ordered upwind methods for static Hamilton–Jacobi equations , 2001, Proceedings of the National Academy of Sciences of the United States of America.
[25] W. Symes,et al. Finite‐difference quasi‐P traveltimes for anisotropic media , 2001 .
[26] M. V. Hoop,et al. Approximate dispersion relations for qP-qSV-waves in transversely isotropic media , 2000 .
[27] Finite-difference methods for estimating traveltimes and raypaths in anisotropic media , 2001 .
[28] Ilya Tsvankin,et al. Seismic Signatures and Analysis of Reflection Data in Anisotropic Media , 2001 .
[29] W. Symes,et al. Anisotropic finite‐difference traveltimes using a Hamilton‐Jacobi solver , 1997 .
[30] E. J. Scott. Wave propagation in a stratified medium , 1957 .
[31] J. Sethian,et al. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .
[32] J. Vidale. Finite‐difference calculation of traveltimes in three dimensions , 1990 .
[33] M. Ali Ak,et al. ‘European’ Association of Geoscientists & Engineers , 1997 .
[34] Roelof Versteeg,et al. The Marmousi experience; velocity model determination on a synthetic complex data set , 1994 .
[35] Eric de Bazelaire,et al. Normal moveout revisited; inhomogeneous media and curved interfaces , 1988 .
[36] J. Sethian,et al. FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .
[37] G. Backus. Long-Wave Elastic Anisotropy Produced by Horizontal Layering , 1962 .
[38] R. Siliqi,et al. 3D VTI EIKONAL SOLVER FOR EFFICIENT ACOUSTIC TRAVEL- TIME COMPUTATION , 2000 .
[39] I. Tsvankin. P-wave signatures and notation for transversely isotropic media: An overview , 1996 .
[40] F. Gassmann. Introduction to seismic travel time methods in anisotropic media , 1964 .
[41] Sergey Fomel. Evaluating the Stolt stretch parameter , 2000, S&P 2000.
[42] Jean Brac,et al. Can we image complex structures with first‐arrival traveltime? , 1993 .
[43] J A Sethian,et al. A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.
[44] Tariq Alkhalifah. Traveltime computation with the linearized eikonal equation for anisotropic media , 2002 .
[45] Tariq Alkhalifah,et al. An acoustic wave equation for anisotropic media , 2000 .
[46] Linearization of the P‐wave eikonal equation for weak vertical transverse isotropy , 2003 .
[47] B. S. Byun. Seismic parameters for transversely isotropic media , 1984 .
[48] Rémi Abgrall,et al. Big ray-tracing and eikonal solver on unstructured grids: Application to the computation of a multivalued traveltime field in the Marmousi model , 1999 .
[49] William W. Symes,et al. A slowness matching finite difference method for traveltimes beyond transmission caustics , 1998 .
[50] Dimitri Bevc,et al. Imaging complex structure with semirecursive Kirchhoff migration , 1997 .
[51] James G. Berryman,et al. Long-wave elastic anisotropy in transversely isotropic media , 1979 .
[52] Approximate Explicit Ray Velocity Functions and Travel Times for P-waves in TI Media , 2001 .
[53] Tariq Alkhalifah,et al. Implementing the fast marching eikonal solver: spherical versus Cartesian coordinates , 2001 .