On anelliptic approximations for qP velocities in VTI media

A unified approach to approximating phase and group velocities of qP seismic waves in a transversely isotropic medium with vertical axis of symmetry (VTI) is developed. While the exact phase-velocity expressions involve four independent parameters to characterize the elastic medium, the proposed approximate expressions use only three parameters. This makes them more convenient for use in surface seismic experiments, where the estimation of all four parameters is problematic. The three-parameter phase-velocity approximation coincides with the previously published ‘acoustic’ approximation of Alkhalifah. The group-velocity approximation is new and noticeably more accurate than some of the previously published approximations. An application of the group-velocity approximation for finite-difference computation of traveltimes is shown.

[1]  L. Thomsen Weak elastic anisotropy , 1986 .

[2]  Sergey Fomel,et al.  A variational formulation of the fast marching eikonal solver , 2000 .

[3]  R. J. Castle,et al.  A theory of normal moveout , 1994 .

[4]  Tariq Alkhalifah,et al.  Velocity analysis for transversely isotropic media , 1995 .

[5]  Gerard T. Schuster,et al.  First‐arrival traveltime calculation for anisotropic media , 1993 .

[6]  R. G. Pratt,et al.  Traveltime tomography in anisotropic media—I. Theory , 1992 .

[7]  P. Podvin,et al.  Finite difference computation of traveltimes in very contrasted velocity models: a massively parallel approach and its associated tools , 1991 .

[8]  Marko Subasic,et al.  Level Set Methods and Fast Marching Methods , 2003 .

[9]  Gerard T. Schuster,et al.  Finite‐difference solution of the eikonal equation along expanding wavefronts , 1992 .

[10]  Herbert F. Wang,et al.  Ultrasonic velocities in Cretaceous shales from the Williston basin , 1981 .

[11]  R. Stolt MIGRATION BY FOURIER TRANSFORM , 1978 .

[12]  Seongjai Kim On eikonal solvers for anisotropic traveltimes , 1999 .

[13]  William W. Symes,et al.  Upwind finite-difference calculation of traveltimes , 1991 .

[14]  Tariq Alkhalifah,et al.  Acoustic approximations for processing in transversely isotropic media , 1998 .

[15]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[16]  S. Fomel,et al.  Fast-marching eikonal solver in the tetragonal coordinates , 1998 .

[17]  P. Fowler Practical VTI approximations: a systematic anatomy , 2003 .

[18]  Seongjai Kim 3-D eikonal solvers: First-arrival traveltimes , 2002 .

[19]  J. Sethian,et al.  3-D traveltime computation using the fast marching method , 1999 .

[20]  J. Gaiser,et al.  Anisotropic velocity analysis for lithology discrimination , 1989 .

[21]  Alexander Vladimirsky,et al.  Ordered Upwind Methods for Static Hamilton-Jacobi Equations: Theory and Algorithms , 2003, SIAM J. Numer. Anal..

[22]  Shunhua Cao,et al.  Finite-difference solution of the eikonal equation using an efficient, first-arrival, wavefront tracking scheme , 1994 .

[23]  An Eikonal Solver in Tilted TI media , 2002 .

[24]  J. Sethian,et al.  Ordered upwind methods for static Hamilton–Jacobi equations , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[25]  W. Symes,et al.  Finite‐difference quasi‐P traveltimes for anisotropic media , 2001 .

[26]  M. V. Hoop,et al.  Approximate dispersion relations for qP-qSV-waves in transversely isotropic media , 2000 .

[27]  Finite-difference methods for estimating traveltimes and raypaths in anisotropic media , 2001 .

[28]  Ilya Tsvankin,et al.  Seismic Signatures and Analysis of Reflection Data in Anisotropic Media , 2001 .

[29]  W. Symes,et al.  Anisotropic finite‐difference traveltimes using a Hamilton‐Jacobi solver , 1997 .

[30]  E. J. Scott Wave propagation in a stratified medium , 1957 .

[31]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[32]  J. Vidale Finite‐difference calculation of traveltimes in three dimensions , 1990 .

[33]  M. Ali Ak,et al.  ‘European’ Association of Geoscientists & Engineers , 1997 .

[34]  Roelof Versteeg,et al.  The Marmousi experience; velocity model determination on a synthetic complex data set , 1994 .

[35]  Eric de Bazelaire,et al.  Normal moveout revisited; inhomogeneous media and curved interfaces , 1988 .

[36]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[37]  G. Backus Long-Wave Elastic Anisotropy Produced by Horizontal Layering , 1962 .

[38]  R. Siliqi,et al.  3D VTI EIKONAL SOLVER FOR EFFICIENT ACOUSTIC TRAVEL- TIME COMPUTATION , 2000 .

[39]  I. Tsvankin P-wave signatures and notation for transversely isotropic media: An overview , 1996 .

[40]  F. Gassmann Introduction to seismic travel time methods in anisotropic media , 1964 .

[41]  Sergey Fomel Evaluating the Stolt stretch parameter , 2000, S&P 2000.

[42]  Jean Brac,et al.  Can we image complex structures with first‐arrival traveltime? , 1993 .

[43]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Tariq Alkhalifah Traveltime computation with the linearized eikonal equation for anisotropic media , 2002 .

[45]  Tariq Alkhalifah,et al.  An acoustic wave equation for anisotropic media , 2000 .

[46]  Linearization of the P‐wave eikonal equation for weak vertical transverse isotropy , 2003 .

[47]  B. S. Byun Seismic parameters for transversely isotropic media , 1984 .

[48]  Rémi Abgrall,et al.  Big ray-tracing and eikonal solver on unstructured grids: Application to the computation of a multivalued traveltime field in the Marmousi model , 1999 .

[49]  William W. Symes,et al.  A slowness matching finite difference method for traveltimes beyond transmission caustics , 1998 .

[50]  Dimitri Bevc,et al.  Imaging complex structure with semirecursive Kirchhoff migration , 1997 .

[51]  James G. Berryman,et al.  Long-wave elastic anisotropy in transversely isotropic media , 1979 .

[52]  Approximate Explicit Ray Velocity Functions and Travel Times for P-waves in TI Media , 2001 .

[53]  Tariq Alkhalifah,et al.  Implementing the fast marching eikonal solver: spherical versus Cartesian coordinates , 2001 .