Structural and Mechanistic Insights into Fast Lithium-Ion Conduction in Li4SiO4-Li3PO4 Solid Electrolytes.

Solid electrolytes that are chemically stable and have a high ionic conductivity would dramatically enhance the safety and operating lifespan of rechargeable lithium batteries. Here, we apply a multi-technique approach to the Li-ion conducting system (1-z)Li4SiO4-(z)Li3PO4 with the aim of developing a solid electrolyte with enhanced ionic conductivity. Previously unidentified superstructure and immiscibility features in high-purity samples are characterized by X-ray and neutron diffraction across a range of compositions (z = 0.0-1.0). Ionic conductivities from AC impedance measurements and large-scale molecular dynamics (MD) simulations are in good agreement, showing very low values in the parent phases (Li4SiO4 and Li3PO4) but orders of magnitude higher conductivities (10(-3) S/cm at 573 K) in the mixed compositions. The MD simulations reveal new mechanistic insights into the mixed Si/P compositions in which Li-ion conduction occurs through 3D pathways and a cooperative interstitial mechanism; such correlated motion is a key factor in promoting high ionic conductivity. Solid-state (6)Li, (7)Li, and (31)P NMR experiments reveal enhanced local Li-ion dynamics and atomic disorder in the solid solutions, which are correlated to the ionic diffusivity. These unique insights will be valuable in developing strategies to optimize the ionic conductivity in this system and to identify next-generation solid electrolytes.

[1]  Ryoji Kanno,et al.  Lithium Ionic Conductor Thio-LISICON: The Li2 S ­ GeS2 ­ P 2 S 5 System , 2001 .

[2]  W. H. Baur,et al.  Crystal structure of ordered Li4SiO4 , 1979 .

[3]  Yasutaka Matsuda,et al.  Characterization of Thin-Film Lithium Batteries with Stable Thin-Film Li3PO4 Solid Electrolytes Fabricated by ArF Excimer Laser Deposition , 2010 .

[4]  V. Viallet,et al.  An all-solid state NASICON sodium battery operating at 200 °C , 2014 .

[5]  Robert A. Huggins Recent results on lithium ion conductors , 1977 .

[6]  P. Bruce,et al.  Lithium-ion diffusion mechanisms in the battery anode material Li(1+x)V(1-x)O₂. , 2014, Physical chemistry chemical physics : PCCP.

[7]  R. D. Shannon,et al.  New Li solid electrolytes , 1977 .

[8]  P. Bruce,et al.  Structure and lithium transport pathways in Li2FeSiO4 cathodes for lithium batteries. , 2011, Journal of the American Chemical Society.

[9]  Stefan Adams,et al.  Simulated defect and interface engineering for high power Li electrode materials , 2011 .

[10]  T. Ohno,et al.  Theoretically Designed Li3PO4 (100)/LiFePO4 (010) Coherent Electrolyte/Cathode Interface for All Solid-State Li Ion Secondary Batteries , 2015 .

[11]  W. H. Baur The geometry of polyhedral distortions. Predictive relationships for the phosphate group , 1974 .

[12]  P. Heitjans,et al.  Extremely slow cation exchange processes in Li4SiO4 probed directly by two-time 7Li stimulated-echo nuclear magnetic resonance spectroscopy , 2006 .

[13]  S. Garofalini,et al.  Molecular Dynamics Simulations of Li Insertion in a Nanocrystalline V 2 O 5 Thin Film Cathode , 2005 .

[14]  P. Bruce,et al.  The A‐C Conductivity of Polycrystalline LISICON, Li2 + 2x Zn1 − x GeO4, and a Model for Intergranular Constriction Resistances , 1983 .

[15]  P. Bruce,et al.  The lithium intercalation process in the low-voltage lithium battery anode Li(1+x)V(1-x)O2. , 2011, Nature materials.

[16]  A. Spek,et al.  Low-temperature structure of lithium nesosilicate, Li4SiO4, and its Li1s and O1s X-ray photoelectron spectrum , 1994 .

[17]  S. Kawai,et al.  NMR study of Li+-ion diffusion in the solid solution Li3+x(P1−x, Six)O4> with the γII-Li3PO4 structure , 1982 .

[18]  K. Fujimura,et al.  Accelerated Materials Design of Lithium Superionic Conductors Based on First‐Principles Calculations and Machine Learning Algorithms , 2013 .

[19]  A. West,et al.  The solid electrolyte system, Li3PO4Li4SiO4 , 1981 .

[20]  Alfonso Pedone,et al.  A new self-consistent empirical interatomic potential model for oxides, silicates, and silica-based glasses. , 2006, The journal of physical chemistry. B.

[21]  D. P. Burum,et al.  Temperature Dependence of 207 Pb MAS Spectra of Solid Lead Nitrate. An Accurate, Sensitive Thermometer for Variable-Temperature MAS , 1995 .

[22]  S. Hull,et al.  Superionics: crystal structures and conduction processes , 2004 .

[23]  S. Park,et al.  Atomistic Simulation Study of Mixed-Metal Oxide (LiNi1/3Co1/3Mn1/3O2) Cathode Material for Lithium Ion Battery , 2012 .

[24]  P. Heitjans,et al.  Li Ion Dynamics in a LiAlO2 Single Crystal Studied by 7Li NMR Spectroscopy and Conductivity Measurements , 2012 .

[25]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[26]  F. Gourbilleau,et al.  Sol-gel preparation and lithium dynamics in the Li4SiO4-Li3PO4 solid solution. , 1991 .

[27]  Kyeongjae Cho,et al.  Electrode-Electrolyte Interface for Solid State Li-Ion Batteries: Point Defects and Mechanical Strain , 2014 .

[28]  R. Smith,et al.  Superionicity inNa3PO4: A molecular dynamics simulation , 2004 .

[29]  J. Stebbins,et al.  Cation Dynamics and Diffusion in Lithium Orthosilicate: Two-Dimensional Lithium-6 NMR , 1995, Science.

[30]  Kazunori Takada,et al.  A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries , 2014 .

[31]  Yo Kobayashi,et al.  Development of high-voltage and high-capacity all-solid-state lithium secondary batteries , 2005 .

[32]  K. Tadanaga,et al.  New, Highly Ion‐Conductive Crystals Precipitated from Li2S–P2S5 Glasses , 2005 .

[33]  M. Tabuchi,et al.  Synthesis and electrical property of Li2−xFeSi1−xPxO4 as positive electrodes by spark-plasma-sintering process , 2013 .

[34]  Benjamin J Morgan,et al.  Relationships between atomic diffusion mechanisms and ensemble transport coefficients in crystalline polymorphs. , 2014, Physical review letters.

[35]  R. Wasylishen,et al.  31P NMR Study of Powder and Single-Crystal Samples of Ammonium Dihydrogen Phosphate: Effect of Homonuclear Dipolar Coupling , 1994 .

[36]  C. Catlow COMPUTER SIMULATION STUDIES OF TRANSPORT IN SOLIDS , 1986 .

[37]  M. Jansen Volume Effect or Paddle‐Wheel Mechanism—Fast Alkali‐Metal Ionic Conduction in Solids with Rotationally Disordered Complex Anions , 1991 .

[38]  Martin T. Dove,et al.  DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism , 2006 .

[39]  Julian D. Gale,et al.  The General Utility Lattice Program (GULP) , 2003 .

[40]  Supriya Roy,et al.  Influence of Si/P ordering on Na+ transport in NASICONs. , 2013, Physical chemistry chemical physics : PCCP.

[41]  Phl Peter Notten,et al.  Chemical Vapor Deposition of Lithium Phosphate Thin-Films for 3D All-Solid-State Li-Ion Batteries , 2015 .

[42]  Lei Cheng,et al.  Effect of lithium borate addition on the physical and electrochemical properties of the lithium ion conductor Li3.4Si0.4P0.6O4 , 2013 .

[43]  J. Whitacre,et al.  Crystalline Li3Po4/Li4SiO4 solid solutions as an electrolyte for film batteries using sputtered cathode layers , 2004 .

[44]  N. Holzwarth,et al.  Li Ion Diffusion Mechanisms in the Crystalline Electrolyte γ-Li3PO4 , 2007 .

[45]  Venkataraman Thangadurai,et al.  Novel Fast Lithium Ion Conduction in Garnet‐Type Li5La3M2O12 (M = Nb, Ta) , 2003 .

[46]  E. Cussen,et al.  Structure and ionic conductivity in lithium garnets , 2010 .

[47]  V. Pomjakushin,et al.  High-resolution powder diffractometer HRPT for thermal neutrons at SINQ , 2000 .

[48]  C. Catlow,et al.  Potential models for ionic oxides , 1985 .

[49]  Jeffrey W. Fergus,et al.  Ceramic and polymeric solid electrolytes for lithium-ion batteries , 2010 .

[50]  R. Huggins,et al.  Ionic Conductivity of Lithium Orthosilicate—Lithium Phosphate Solid Solutions , 1977 .

[51]  C. Fisher,et al.  Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. , 2014, Chemical Society reviews.

[52]  S. Adnan,et al.  Effects of Sn substitution on the properties of Li4SiO4 ceramic electrolyte , 2014 .

[53]  John B. Goodenough,et al.  Fast Na+-ion transport in skeleton structures , 1976 .

[54]  K. Clausen,et al.  The Swiss Spallation Neutron Source SINQ at Paul Scherrer Institut , 2009 .

[55]  N. Holzwarth,et al.  Structures, Li + mobilities, and interfacial properties of solid electrolytes Li 3 PS 4 and Li 3 PO 4 from first principles , 2013 .

[56]  R. Kanno,et al.  Synthesis of a new lithium ionic conductor, thio-LISICON–lithium germanium sulfide system , 2000 .

[57]  Piercarlo Mustarelli,et al.  Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. , 2011, Chemical Society reviews.

[58]  J. Stebbins,et al.  6Li nuclear magnetic resonance chemical shifts, coordination number and relaxation in crystalline and glassy silicates. , 1995, Solid state nuclear magnetic resonance.

[59]  Heriberto Pfeiffer,et al.  TEXTURAL, STRUCTURAL, AND CO2 CHEMISORPTION EFFECTS PRODUCED ON THE LITHIUM ORTHOSILICATE BY ITS DOPING WITH SODIUM (LI4?XNAXSIO4) , 2008 .

[60]  Shyue Ping Ong,et al.  Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors , 2013 .

[61]  S. Kawai,et al.  NMR study on an Li+-ion diffusion in the solid solution Li4−x(PO4)x(SiO4)1−x with the Li4SiO4-type structure , 1980 .

[62]  H. Yamasaki,et al.  Nanosecond quantum molecular dynamics simulations of the lithium superionic conductor Li 4-x Ge 1-x P x S 4 , 2014 .

[63]  H. Nowotny,et al.  Die Kristallstruktur von Li4SiO4 , 1968 .

[64]  M. Islam,et al.  Ion intercalation into two-dimensional transition-metal carbides: global screening for new high-capacity battery materials. , 2014, Journal of the American Chemical Society.

[65]  C. Masquelier Solid electrolytes: Lithium ions on the fast track. , 2011, Nature materials.

[66]  D. Vollath,et al.  Cation exchange rates and mobility in aluminum-doped lithium orthosilicate : high-resolution lithium-6 NMR results , 1995 .

[67]  W. H. Baur,et al.  The crystal structure of Li3.75Si0.75P0.25O4 and ionic conductivity in tetrahedral structures , 1982 .