Threshold-Coloring of Archimedean and Laves Lattices

We study threshold-coloring of tilings of the plane by regular polygons, known as Archimedean lattices. We prove that some are threshold-colorable with constant number of colors while some require $O(\sqrt n)$ colors for a lattice of $n$ vertices. Using a threshold-coloring we can construct unit-cube contact representation for the colorable Archimedean lattices and any sublattice thereof. We show that sparse and high girth planar graphs are $(5,1)$-total-threshold-colorable.

[1]  Stefan Felsner,et al.  Contact representations of planar graphs with cubes , 2011, SoCG '11.

[2]  Paul Erdös,et al.  Colouring the real line , 1985, J. Comb. Theory B.

[3]  Peter L. Hammer,et al.  Difference graphs , 1990, Discret. Appl. Math..

[4]  Yoshiharu Kohayakawa,et al.  Distance Graphs on the Integers , 2005, Combinatorics, Probability and Computing.

[5]  M. Golumbic,et al.  On the Complexity of DNA Physical Mapping , 1994 .

[6]  Martin Charles Golumbic,et al.  Graph Sandwich Problems , 1995, J. Algorithms.

[7]  Stephen G. Kobourov,et al.  Threshold-Coloring and Unit-Cube Contact Representation of Graphs , 2013, WG.

[8]  Jirí Fiala,et al.  Systems of distant representatives , 2005, Discret. Appl. Math..

[9]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[10]  Jerrold R. Griggs,et al.  Labelling Graphs with a Condition at Distance 2 , 1992, SIAM J. Discret. Math..

[11]  N. Mahadev,et al.  Threshold graphs and related topics , 1995 .

[12]  Carsten Thomassen,et al.  Interval representations of planar graphs , 1986, J. Comb. Theory, Ser. B.

[13]  Giuseppe Liotta,et al.  On Representing Graphs by Touching Cuboids , 2012, Graph Drawing.

[14]  André Raspaud,et al.  Star coloring of sparse graphs , 2009 .

[15]  Craig Timmons Star Coloring High Girth Planar Graphs , 2008, Electron. J. Comb..