Convex methods for robust H2 analysis of continuous-time systems

Treats the robust H/sub 2/ performance question of evaluating the rejection of continuous-time white noise, in the worst case over structured uncertainty in the system. A frequency domain convex condition for robust H/sub 2/ analysis is presented, with analogous properties as in the discrete-time case. In particular, necessary and sufficient results are obtained introducing a continuous-time version of the methodology of set descriptions of white noise. In addition, a state-space test in terms of linear matrix inequalities is developed for the robust H/sub 2/ problem in the case of constant uncertainty scalings, which apply to nonlinear or time-varying uncertainty. Thus the problem is rendered finite dimensional in the same situation in which robust H/sub /spl infin// analysis is finite dimensional.

[1]  Ian R. Petersen,et al.  Optimal guaranteed cost control of discrete‐time uncertain linear systems , 1998 .

[2]  W. Rudin Real and complex analysis , 1968 .

[3]  Anton A. Stoorvogel,et al.  Mixed H2/H∞ control in a stochastic framework , 1994 .

[4]  Fernando Paganini,et al.  Necessary and sufficient conditions for robust H/sub 2/ performance , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[5]  Ian R. Petersen,et al.  Optimal Guaranteed Cost Control of Discrete-time Uncertain Linear Systems 1 , 1993 .

[6]  F. Paganini Sets and Constraints in the Analysis Of Uncertain Systems , 1996 .

[7]  E. Feron Analysis of Robust H 2 Performance Using Multiplier Theory , 1997 .

[8]  G. Stein,et al.  Multivariable feedback design: Concepts for a classical/modern synthesis , 1981 .

[9]  J. How,et al.  Mixed H/sub 2///spl mu/ performance bounds using dissipation theory , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[10]  G. Stein,et al.  The LQG/LTR procedure for multivariable feedback control design , 1987 .

[11]  J. Willems Least squares stationary optimal control and the algebraic Riccati equation , 1971 .

[12]  D. Bernstein,et al.  LQG control with an H/sup infinity / performance bound: a Riccati equation approach , 1989 .

[13]  Kemin Zhou,et al.  Mixed /spl Hscr//sub 2/ and /spl Hscr//sub /spl infin// performance objectives. I. Robust performance analysis , 1994 .

[14]  G. Zames Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses , 1981 .

[15]  J. Shamma Robust stability with time-varying structured uncertainty , 1994, IEEE Trans. Autom. Control..

[16]  Fernando Paganini,et al.  Frequency domain conditions for robust H2 performance , 1999, IEEE Trans. Autom. Control..

[17]  John C. Doyle,et al.  Guaranteed margins for LQG regulators , 1978 .

[18]  K. Poolla,et al.  Robust performance against time-varying structured perturbations , 1995, IEEE Trans. Autom. Control..

[19]  F. Paganini A set-based approach for white noise modeling , 1996, IEEE Trans. Autom. Control..

[20]  Fernando Paganini,et al.  Analysis of robust H/sub 2/ performance: comparisons and examples , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[21]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[22]  A. Bruce Carlson,et al.  Communication systems: an introduction to signals and noise in electrical communication , 1975 .

[23]  Kemin Zhou,et al.  Mixed /spl Hscr//sub 2/ and /spl Hscr//sub /spl infin// performance objectives. II. Optimal control , 1994 .

[24]  B. Øksendal Stochastic Differential Equations , 1985 .

[25]  A. Stoorvogel The robust H2 control problem: a worst-case design , 1993, IEEE Trans. Autom. Control..

[26]  Andrew Packard,et al.  The complex structured singular value , 1993, Autom..

[27]  G. Zames On the input-output stability of time-varying nonlinear feedback systems Part one: Conditions derived using concepts of loop gain, conicity, and positivity , 1966 .

[28]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[29]  Michael G. Safonov,et al.  Stability and Robustness of Multivariable Feedback Systems , 1980 .

[30]  Fernando Paganini,et al.  State space conditions for robust H/sub 2/ analysis , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[31]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[32]  John C. Doyle Analysis of Feedback Systems with Structured Uncertainty , 1982 .

[33]  M. Dahleh,et al.  Control of Uncertain Systems: A Linear Programming Approach , 1995 .

[34]  J. Kiefer,et al.  An Introduction to Stochastic Processes. , 1956 .

[35]  P. Khargonekar,et al.  Mixed H/sub 2//H/sub infinity / control: a convex optimization approach , 1991 .

[36]  Peter M. Young,et al.  Robustness with parametric and dynamic uncertainty , 1993 .