Convex methods for robust H2 analysis of continuous-time systems
暂无分享,去创建一个
[1] Ian R. Petersen,et al. Optimal guaranteed cost control of discrete‐time uncertain linear systems , 1998 .
[2] W. Rudin. Real and complex analysis , 1968 .
[3] Anton A. Stoorvogel,et al. Mixed H2/H∞ control in a stochastic framework , 1994 .
[4] Fernando Paganini,et al. Necessary and sufficient conditions for robust H/sub 2/ performance , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.
[5] Ian R. Petersen,et al. Optimal Guaranteed Cost Control of Discrete-time Uncertain Linear Systems 1 , 1993 .
[6] F. Paganini. Sets and Constraints in the Analysis Of Uncertain Systems , 1996 .
[7] E. Feron. Analysis of Robust H 2 Performance Using Multiplier Theory , 1997 .
[8] G. Stein,et al. Multivariable feedback design: Concepts for a classical/modern synthesis , 1981 .
[9] J. How,et al. Mixed H/sub 2///spl mu/ performance bounds using dissipation theory , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.
[10] G. Stein,et al. The LQG/LTR procedure for multivariable feedback control design , 1987 .
[11] J. Willems. Least squares stationary optimal control and the algebraic Riccati equation , 1971 .
[12] D. Bernstein,et al. LQG control with an H/sup infinity / performance bound: a Riccati equation approach , 1989 .
[13] Kemin Zhou,et al. Mixed /spl Hscr//sub 2/ and /spl Hscr//sub /spl infin// performance objectives. I. Robust performance analysis , 1994 .
[14] G. Zames. Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses , 1981 .
[15] J. Shamma. Robust stability with time-varying structured uncertainty , 1994, IEEE Trans. Autom. Control..
[16] Fernando Paganini,et al. Frequency domain conditions for robust H2 performance , 1999, IEEE Trans. Autom. Control..
[17] John C. Doyle,et al. Guaranteed margins for LQG regulators , 1978 .
[18] K. Poolla,et al. Robust performance against time-varying structured perturbations , 1995, IEEE Trans. Autom. Control..
[19] F. Paganini. A set-based approach for white noise modeling , 1996, IEEE Trans. Autom. Control..
[20] Fernando Paganini,et al. Analysis of robust H/sub 2/ performance: comparisons and examples , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.
[21] J. Doyle,et al. Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.
[22] A. Bruce Carlson,et al. Communication systems: an introduction to signals and noise in electrical communication , 1975 .
[23] Kemin Zhou,et al. Mixed /spl Hscr//sub 2/ and /spl Hscr//sub /spl infin// performance objectives. II. Optimal control , 1994 .
[24] B. Øksendal. Stochastic Differential Equations , 1985 .
[25] A. Stoorvogel. The robust H2 control problem: a worst-case design , 1993, IEEE Trans. Autom. Control..
[26] Andrew Packard,et al. The complex structured singular value , 1993, Autom..
[27] G. Zames. On the input-output stability of time-varying nonlinear feedback systems Part one: Conditions derived using concepts of loop gain, conicity, and positivity , 1966 .
[28] Stephen P. Boyd,et al. Linear Matrix Inequalities in Systems and Control Theory , 1994 .
[29] Michael G. Safonov,et al. Stability and Robustness of Multivariable Feedback Systems , 1980 .
[30] Fernando Paganini,et al. State space conditions for robust H/sub 2/ analysis , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).
[31] D. Luenberger. Optimization by Vector Space Methods , 1968 .
[32] John C. Doyle. Analysis of Feedback Systems with Structured Uncertainty , 1982 .
[33] M. Dahleh,et al. Control of Uncertain Systems: A Linear Programming Approach , 1995 .
[34] J. Kiefer,et al. An Introduction to Stochastic Processes. , 1956 .
[35] P. Khargonekar,et al. Mixed H/sub 2//H/sub infinity / control: a convex optimization approach , 1991 .
[36] Peter M. Young,et al. Robustness with parametric and dynamic uncertainty , 1993 .