Contrast-Enhanced Fusion of Multisensor Images Using Subband-Decomposed Multiscale Retinex

In this paper, we propose a novel pixel-level multisensor image fusion algorithm with simultaneous contrast enhancement. In order to accomplish both image fusion and contrast enhancement simultaneously, we suggest a modified framework of the subband-decomposed multiscale retinex (SDMSR), our previous contrast enhancement algorithm. This framework is based on a fusion strategy that reflects the multiscale characteristics of the SDMSR well. We first apply two complementary intensity transfer functions to source images in order to effectively utilize hidden information in both shadows and highlights in the fusion process. We then decompose retinex outputs into nearly nonoverlapping spectral subbands. The decomposed retinex outputs are then fused subband-by-subband, by using global weighting as well as local weighting to overcome the limitations of the pixel-based fusion approach. After the fusion process, we apply a space-varying subband gain to each fused SD retinex output according to the subband characteristic so that the contrast of the fused image can be effectively enhanced. In addition, in order to effectively manage artifacts and noise, we make the degree of enhancement of fused details adjustable by improving a detail adjustment function. From experiments with various multisensor image pairs, the results clearly demonstrate that even if source images have poor contrast, the proposed algorithm makes it possible to generate a fused image with highly enhanced contrast while preserving visually salient information contained in the source images.

[1]  P Scheunders,et al.  Fusion and merging of multispectral images with use of multiscale fundamental forms. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[2]  Glenn D. Hines,et al.  Multisensor fusion and enhancement using the Retinex image enhancement algorithm , 2002, SPIE Defense + Commercial Sensing.

[3]  Zia-ur Rahman,et al.  Retinex processing for automatic image enhancement , 2002, IS&T/SPIE Electronic Imaging.

[4]  Shutao Li,et al.  Performance comparison of different multi-resolution transforms for image fusion , 2011, Inf. Fusion.

[5]  Myeong-Ryong Nam,et al.  Fusion of multispectral and panchromatic Satellite images using the curvelet transform , 2005, IEEE Geoscience and Remote Sensing Letters.

[6]  Gonzalo Pajares,et al.  A wavelet-based image fusion tutorial , 2004, Pattern Recognit..

[7]  Farhan A. Baqai,et al.  Analysis and extensions of the Frankle-McCann Retinex algorithm , 2004, J. Electronic Imaging.

[8]  Brian V. Funt,et al.  Tuning Retinex parameters , 2004, J. Electronic Imaging.

[9]  Shutao Li,et al.  Image Fusion Using Nonsubsampled Contourlet Transform , 2007, Fourth International Conference on Image and Graphics (ICIG 2007).

[10]  E H Land,et al.  Recent advances in retinex theory and some implications for cortical computations: color vision and the natural image. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Alexander Toet,et al.  Multiscale contrast enhancement with applications to image fusion , 1992 .

[12]  Henk J. A. M. Heijmans,et al.  A new quality metric for image fusion , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[13]  Shuyuan Yang,et al.  Image fusion based on a new contourlet packet , 2010, Inf. Fusion.

[14]  Wenzhong Shi,et al.  Multisource Image Fusion Method Using Support Value Transform , 2007, IEEE Transactions on Image Processing.

[15]  Vladimir Petrovic,et al.  Objective image fusion performance measure , 2000 .

[16]  Alessandro Rizzi,et al.  A computational approach to color adaptation effects , 2000, Image Vis. Comput..

[17]  Emmanuel J. Candès,et al.  The curvelet transform for image denoising , 2002, IEEE Trans. Image Process..

[18]  B. S. Manjunath,et al.  Multisensor Image Fusion Using the Wavelet Transform , 1995, CVGIP Graph. Model. Image Process..

[19]  Gemma Piella,et al.  A general framework for multiresolution image fusion: from pixels to regions , 2003, Inf. Fusion.

[20]  Sangkeun Lee,et al.  An Efficient Content-Based Image Enhancement in the Compressed Domain Using Retinex Theory , 2007, IEEE Transactions on Circuits and Systems for Video Technology.

[21]  Minh N. Do,et al.  The Nonsubsampled Contourlet Transform: Theory, Design, and Applications , 2006, IEEE Transactions on Image Processing.

[22]  Andrew C. Gallagher The Art and Science of HDR Imaging , 2012, J. Electronic Imaging.

[23]  Nick G. Kingsbury,et al.  Shift invariant properties of the dual-tree complex wavelet transform , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[24]  E. Land,et al.  Lightness and retinex theory. , 1971, Journal of the Optical Society of America.

[25]  Eli Peli Display nonlinearity in digital image processing for visual communications , 1992 .

[26]  Alexander Toet,et al.  Merging thermal and visual images by a contrast pyramid , 1989 .

[27]  Michael Elad,et al.  A Variational Framework for Retinex , 2002, IS&T/SPIE Electronic Imaging.

[28]  Jong Beom Ra,et al.  Enhancement of Optical Remote Sensing Images by Subband-Decomposed Multiscale Retinex With Hybrid Intensity Transfer Function , 2011, IEEE Geoscience and Remote Sensing Letters.

[29]  E H Land,et al.  An alternative technique for the computation of the designator in the retinex theory of color vision. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Vladimir S. Petrovic,et al.  Gradient-based multiresolution image fusion , 2004, IEEE Transactions on Image Processing.

[31]  Hanqiang Cao,et al.  Multisensor image fusion using fast discrete curvelet transform , 2007, International Symposium on Multispectral Image Processing and Pattern Recognition.

[32]  Qiang Zhang,et al.  Multifocus image fusion using the nonsubsampled contourlet transform , 2009, Signal Process..

[33]  Luciano Alparone,et al.  Remote sensing image fusion using the curvelet transform , 2007, Inf. Fusion.

[34]  Qiguang Miao,et al.  The contourlet transform for image fusion , 2006, SPIE Defense + Commercial Sensing.

[35]  Christine Pohl,et al.  Multisensor image fusion in remote sensing: concepts, methods and applications , 1998 .

[36]  Alessandro Rizzi,et al.  Random Spray Retinex: A New Retinex Implementation to Investigate the Local Properties of the Model , 2007, IEEE Transactions on Image Processing.

[37]  Laure J. Chipman,et al.  Wavelets and image fusion , 1995, Proceedings., International Conference on Image Processing.

[38]  Vijayan K. Asari,et al.  A multisensor image fusion and enhancement system for assisting drivers in poor lighting conditions , 2005, 34th Applied Imagery and Pattern Recognition Workshop (AIPR'05).

[39]  John J. McCann,et al.  Retinex in Matlab , 2000, CIC.

[40]  Zia-ur Rahman,et al.  A multiscale retinex for bridging the gap between color images and the human observation of scenes , 1997, IEEE Trans. Image Process..

[41]  Tian Pu,et al.  Contrast-based image fusion using the discrete wavelet transform , 2000 .

[42]  Jamie P. Heather,et al.  A review of image fusion technology in 2005 , 2005, SPIE Defense + Commercial Sensing.

[43]  Alexander Toet,et al.  Image fusion by a ration of low-pass pyramid , 1989, Pattern Recognit. Lett..

[44]  A. Bovik,et al.  A universal image quality index , 2002, IEEE Signal Processing Letters.

[45]  Lei Tang,et al.  Multiresolution image fusion based on the wavelet-based contourlet transform , 2007, 2007 10th International Conference on Information Fusion.

[46]  Zheng Liu,et al.  Image fusion by using steerable pyramid , 2001, Pattern Recognit. Lett..

[47]  Rick S. Blum,et al.  A categorization of multiscale-decomposition-based image fusion schemes with a performance study for a digital camera application , 1999, Proc. IEEE.

[48]  John J. McCann,et al.  Lessons Learned from Mondrians Applied to Real Images and Color Gamuts , 1999, CIC.

[49]  Jong Beom Ra,et al.  Multi-sensor image fusion using subband decomposed multiscale retinex , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[50]  Gemma Piella,et al.  Image Fusion for Enhanced Visualization: A Variational Approach , 2009, International Journal of Computer Vision.

[51]  Richard Baraniuk,et al.  The Dual-tree Complex Wavelet Transform , 2007 .

[52]  B. Luo,et al.  Large-Scale Graph Database Indexing Based on T-mixture Model and ICA , 2007, Fourth International Conference on Image and Graphics (ICIG 2007).

[53]  Zia-ur Rahman,et al.  Properties and performance of a center/surround retinex , 1997, IEEE Trans. Image Process..

[54]  Edoardo Provenzi,et al.  Issues About Retinex Theory and Contrast Enhancement , 2009, International Journal of Computer Vision.

[55]  Minh N. Do,et al.  Ieee Transactions on Image Processing the Contourlet Transform: an Efficient Directional Multiresolution Image Representation , 2022 .

[56]  Cedric Nishan Canagarajah,et al.  Pixel- and region-based image fusion with complex wavelets , 2007, Inf. Fusion.

[57]  Nick G. Kingsbury,et al.  A dual-tree complex wavelet transform with improved orthogonality and symmetry properties , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[58]  Fionn Murtagh,et al.  Gray and color image contrast enhancement by the curvelet transform , 2003, IEEE Trans. Image Process..

[59]  Peter J. Burt,et al.  Enhanced image capture through fusion , 1993, 1993 (4th) International Conference on Computer Vision.

[60]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[61]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[62]  Vladimir S. Petrovic,et al.  Objective pixel-level image fusion performance measure , 2000, SPIE Defense + Commercial Sensing.

[63]  Rodney M. Goodman,et al.  A real-time neural system for color constancy , 1991, IEEE Trans. Neural Networks.

[64]  Vijanth S. Asirvadam,et al.  Multi-Sensor Image Enhancement and Fusion for Vision Clarity Using Contourlet Transform , 2009, 2009 International Conference on Information Management and Engineering.

[65]  E. Land The retinex theory of color vision. , 1977, Scientific American.

[66]  Lawrence B. Wolff,et al.  Multispectral image visualization through first-order fusion , 2002, IEEE Trans. Image Process..

[67]  Feng Zhao,et al.  The nonsubsampled contourlet transform for image fusion , 2007, 2007 International Conference on Wavelet Analysis and Pattern Recognition.

[68]  Terrance L. Huntsberger,et al.  Wavelet-based sensor fusion , 1993, Other Conferences.

[69]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[70]  Robert Sobol,et al.  Improving the Retinex algorithm for rendering wide dynamic range photographs , 2002, IS&T/SPIE Electronic Imaging.

[71]  G. Qu,et al.  Information measure for performance of image fusion , 2002 .