Total chromatic number of unichord-free graphs

Abstract A unichord is an edge that is the unique chord of a cycle in a graph. The class C of unichord-free graphs — that is, graphs that do not contain, as an induced subgraph, a cycle with a unique chord — was recently studied by Trotignon and Vuskovic (2010) [24] , who proved strong structure results for these graphs and used these results to solve the recognition and vertex-colouring problems. Machado et al. (2010) [18] determined the complexity of the edge-colouring problem in the class C and in the subclass C ′ obtained from C by forbidding squares. In the present work, we prove that the total-colouring problem is NP-complete when restricted to graphs in C . For the subclass C ′ , we establish the validity of the Total Colouring Conjecture by proving that every non-complete {square, unichord}-free graph of maximum degree at least 4 is Type 1.

[1]  V. A. Bojarshinov Edge and total coloring of interval graphs , 2001, Discret. Appl. Math..

[2]  N. Vijayaditya On Total Chromatic Number of a Graph , 1971 .

[3]  Leizhen Cai,et al.  NP-completeness of edge-colouring some restricted graphs , 1991, Discret. Appl. Math..

[4]  C. N. Campos,et al.  The total chromatic number of some bipartite graphs , 2005, Ars Comb..

[5]  Ian Holyer,et al.  The NP-Completeness of Edge-Coloring , 1981, SIAM J. Comput..

[6]  Celina M. H. de Figueiredo,et al.  Author's Personal Copy Theoretical Computer Science Chromatic Index of Graphs with No Cycle with a Unique Chord , 2022 .

[7]  J Hang,et al.  THE TOTAL CHROMATIC NUMBER OF SOME GRAPHS , 1988 .

[8]  Colin McDiarmid,et al.  Total colouring regular bipartite graphs is NP-hard , 1994, Discret. Math..

[9]  Li,et al.  Total Chromatic Number of the Join of K_(m,n) and C_n , 2006 .

[10]  Limin Zhang,et al.  Total chromatic number of one kind of join graphs , 2006, Discret. Math..

[11]  Ingo Schiermeyer,et al.  Vertex Colouring and Forbidden Subgraphs – A Survey , 2004, Graphs Comb..

[12]  Abddn SANCHEZ-ARROYO,et al.  Determining the total colouring number is np-hard , 1989, Discret. Math..

[13]  Douglas R. Woodall Total 4-Choosability of Series-Parallel Graphs , 2006, Electron. J. Comb..

[14]  Kathryn Fraughnaugh,et al.  Introduction to graph theory , 1973, Mathematical Gazette.

[15]  Nicolas Trotignon,et al.  A structure theorem for graphs with no cycle with a unique chord and its consequences , 2010, J. Graph Theory.

[16]  Celina M. H. de Figueiredo,et al.  Total chromatic number of {square, unichord}-free graphs , 2010, Electron. Notes Discret. Math..

[17]  Alexandr V. Kostochka,et al.  List Edge and List Total Colourings of Multigraphs , 1997, J. Comb. Theory B.

[18]  Alexandr V. Kostochka,et al.  The total coloring of a multigraph with maximal degree 4 , 1977, Discret. Math..

[19]  Zvi Galil,et al.  NP Completeness of Finding the Chromatic Index of Regular Graphs , 1983, J. Algorithms.

[20]  Alexandr V. Kostochka,et al.  The total chromatic number of any multigraph with maximum degree five is at most seven , 1996, Discret. Math..

[21]  Celina M. H. de Figueiredo,et al.  Total-Chromatic Number and Chromatic Index of Dually Chordal Graphs , 1999, Inf. Process. Lett..

[22]  Douglas R. Woodall,et al.  Edge and Total Choosability of Near-Outerplanar Graphs , 2006, Electron. J. Comb..

[23]  H. Yap Total Colourings of Graphs , 1996 .

[24]  M. Rosenfeld,et al.  On the total coloring of certain graphs , 1971 .

[25]  Shu-Dong Wang,et al.  The Determination of the Total Chromatic Number of Series-Parallel Graphs with (G) ≥ 4 , 2005, Graphs Comb..

[26]  Wei-Fan Wang,et al.  Total chromatic number of planar graphs with maximum degree ten , 2007, J. Graph Theory.

[27]  C. N. Campos,et al.  A result on the total colouring of powers of cycles , 2004, Discret. Appl. Math..

[28]  A. Gyárfás Problems from the world surrounding perfect graphs , 1987 .