The insect mushroom body, an experience-dependent recoding device

[1]  R. Menzel,et al.  Effect of GABAergic inhibition on odorant concentration coding in mushroom body intrinsic neurons of the honeybee , 2014, Journal of Comparative Physiology A.

[2]  Andrew C. Lin,et al.  Sparse, Decorrelated Odor Coding in the Mushroom Body Enhances Learned Odor Discrimination , 2014, Nature Neuroscience.

[3]  Julie H. Simpson,et al.  A Systematic Nomenclature for the Insect Brain , 2014, Neuron.

[4]  Maxim Bazhenov,et al.  Apis mellifera octopamine receptor 1 (AmOA1) expression in antennal lobe networks of the honey bee (Apis mellifera) and fruit fly (Drosophila melanogaster) , 2013, Front. Syst. Neurosci..

[5]  Randolf Menzel,et al.  Cellular Adaptation Facilitates Sparse and Reliable Coding in Sensory Pathways , 2013, PLoS Comput. Biol..

[6]  Scott Waddell,et al.  Shocking Revelations and Saccharin Sweetness in the Study of Drosophila Olfactory Memory , 2013, Current Biology.

[7]  Andrew C. Lin,et al.  Different Kenyon Cell Populations Drive Learned Approach and Avoidance in Drosophila , 2013, Neuron.

[8]  A. Guo,et al.  The GABA system regulates the sparse coding of odors in the mushroom bodies of Drosophila. , 2013, Biochemical and biophysical research communications.

[9]  R. Menzel,et al.  Mushroom Body Extrinsic Neurons in the Honeybee Brain Encode Cues and Contexts Differently , 2013, The Journal of Neuroscience.

[10]  R. Menzel The honeybee as a model for understanding the basis of cognition , 2012, Nature Reviews Neuroscience.

[11]  R. Menzel,et al.  Long-term memory and response generalization in mushroom body extrinsic neurons in the honeybee Apis mellifera , 2012, Journal of Experimental Biology.

[12]  Michael J. Krashes,et al.  A Pair of Inhibitory Neurons Are Required to Sustain Labile Memory in the Drosophila Mushroom Body , 2011, Current Biology.

[13]  Paul Szyszka,et al.  Mind the Gap: Olfactory Trace Conditioning in Honeybees , 2011, The Journal of Neuroscience.

[14]  G. Laurent,et al.  Normalization for Sparse Encoding of Odors by a Wide-Field Interneuron , 2011, Science.

[15]  Ronald L. Davis,et al.  Traces of Drosophila Memory , 2011, Neuron.

[16]  S. Farris,et al.  Parasitoidism, not sociality, is associated with the evolution of elaborate mushroom bodies in the brains of hymenopteran insects , 2011, Proceedings of the Royal Society B: Biological Sciences.

[17]  R. Menzel,et al.  Mushroom Body Output Neurons Encode Odor–Reward Associations , 2011, The Journal of Neuroscience.

[18]  R. Menzel,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[19]  J. Devaud,et al.  Long-Term Memory Leads to Synaptic Reorganization in the Mushroom Bodies: A Memory Trace in the Insect Brain? , 2010, The Journal of Neuroscience.

[20]  R. Wehner,et al.  Visual experience and age affect synaptic organization in the mushroom bodies of the desert ant Cataglyphis fortis , 2010, Developmental neurobiology.

[21]  Hans-Christian Hege,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[22]  R. Menzel,et al.  Neural correlates of odor learning in the honeybee antennal lobe , 2010, The European journal of neuroscience.

[23]  Heike S. Demmer,et al.  Intrinsic membrane properties and inhibitory synaptic input of kenyon cells as mechanisms for sparse coding? , 2009, Journal of neurophysiology.

[24]  A. Barron,et al.  Effect of age, behaviour and social environment on honey bee brain plasticity , 2009, Journal of Comparative Physiology A.

[25]  W. Gronenberg,et al.  Brain Size: A Global or Induced Cost of Learning? , 2009, Brain, Behavior and Evolution.

[26]  Ronald L. Davis,et al.  The GABAergic anterior paired lateral neuron suppresses and is suppressed by olfactory learning , 2008, Nature Neuroscience.

[27]  B. Raman,et al.  Sparse odor representation and olfactory learning , 2008, Nature Neuroscience.

[28]  Kei Ito,et al.  Neuronal assemblies of the Drosophila mushroom body , 2008, The Journal of comparative neurology.

[29]  Akira Mamiya,et al.  Imaging of an Early Memory Trace in the Drosophila Mushroom Body , 2008, The Journal of Neuroscience.

[30]  R. Menzel,et al.  Associative and Non-Associative Plasticity in Kenyon Cells of the Honeybee Mushroom Body , 2008, Frontiers in systems neuroscience.

[31]  A. Ishai,et al.  Recollection- and Familiarity-Based Decisions Reflect Memory Strength , 2008, Frontiers in systems neuroscience.

[32]  Glenn C. Turner,et al.  Olfactory representations by Drosophila mushroom body neurons. , 2008, Journal of neurophysiology.

[33]  Edmund T Rolls,et al.  An attractor network in the hippocampus: theory and neurophysiology. , 2007, Learning & memory.

[34]  R. Menzel,et al.  Learning-Related Plasticity in PE1 and Other Mushroom Body-Extrinsic Neurons in the Honeybee Brain , 2007, The Journal of Neuroscience.

[35]  T. Kubo,et al.  Increased Neural Activity of a Mushroom Body Neuron Subtype in the Brains of Forager Honeybees , 2007, PloS one.

[36]  Gilles Laurent,et al.  A Simple Connectivity Scheme for Sparse Coding in an Olfactory System , 2007, The Journal of Neuroscience.

[37]  S. Waddell,et al.  Sequential Use of Mushroom Body Neuron Subsets during Drosophila Odor Memory Processing , 2007, Neuron.

[38]  R. Menzel,et al.  Neural plasticity of mushroom body-extrinsic neurons in the honeybee brain , 2005, Journal of Experimental Biology.

[39]  R. Menzel,et al.  Three‐dimensional average‐shape atlas of the honeybee brain and its applications , 2005, The Journal of comparative neurology.

[40]  R. Menzel,et al.  Sparsening and temporal sharpening of olfactory representations in the honeybee mushroom bodies. , 2005, Journal of neurophysiology.

[41]  G. Roth,et al.  Evolution of the brain and intelligence , 2005, Trends in Cognitive Sciences.

[42]  G. Laurent,et al.  Intrinsic and Circuit Properties Favor Coincidence Detection for Decoding Oscillatory Input , 2004, The Journal of Neuroscience.

[43]  D. Wüstenberg,et al.  Learning Channels. Cellular Physiology of Odor Processing Neurons Within the Honeybee Brain , 2004, Acta biologica Hungarica.

[44]  Theresa A. Jones,et al.  Mushroom body structural change is associated with division of labor in eusocial wasp workers (Polybia aequatorialis, Hymenoptera: Vespidae) , 2004, Neuroscience Letters.

[45]  G. Robinson,et al.  Limits on volume changes in the mushroom bodies of the honey bee brain. , 2003, Journal of neurobiology.

[46]  R. Menzel,et al.  A new ascending sensory tract to the calyces of the honeybee mushroom body, the subesophageal‐calycal tract , 2003, The Journal of comparative neurology.

[47]  Terrence J Sejnowski,et al.  Communication in Neuronal Networks , 2003, Science.

[48]  M. Heisenberg Mushroom body memoir: from maps to models , 2003, Nature Reviews Neuroscience.

[49]  Glenn C. Turner,et al.  Oscillations and Sparsening of Odor Representations in the Mushroom Body , 2002, Science.

[50]  T. Préat,et al.  Localization of Long-Term Memory Within the Drosophila Mushroom Body , 2001, Science.

[51]  R. Menzel,et al.  Side-specificity of olfactory learning in the honeybee: generalization between odors and sides. , 2001, Learning & memory.

[52]  R. Menzel,et al.  GABA‐immunoreactive neurons in the mushroom bodies of the honeybee: An electron microscopic study , 2001, The Journal of comparative neurology.

[53]  Gene E. Robinson,et al.  Experience- and Age-Related Outgrowth of Intrinsic Neurons in the Mushroom Bodies of the Adult Worker Honeybee , 2001, The Journal of Neuroscience.

[54]  W. Gronenberg Subdivisions of hymenopteran mushroom body calyces by their afferent supply , 2001, The Journal of comparative neurology.

[55]  G. Laurent,et al.  Odor encoding as an active, dynamical process: experiments, computation, and theory. , 2001, Annual review of neuroscience.

[56]  H. Reeve,et al.  Comparison of Brain Volumes between Single and Multiple Foundresses in the Paper Wasp Polistes dominulus , 2001, Brain, Behavior and Evolution.

[57]  J. White,et al.  Channel noise in neurons , 2000, Trends in Neurosciences.

[58]  S. Schäfer,et al.  Proliferation and programmed cell death of neuronal precursors in the mushroom bodies of the honeybee , 2000, The Journal of comparative neurology.

[59]  R. Menzel Memory dynamics in the honeybee , 1999, Journal of Comparative Physiology A.

[60]  T. Shibuya,et al.  Physiology and morphology of olfactory neurons associating with the protocerebral lobe of the honeybee brain. , 1998, Journal of insect physiology.

[61]  R. Menzel,et al.  Integrative properties of the Pe1 neuron, a unique mushroom body output neuron. , 1998, Learning & memory.

[62]  Randolf Menzel,et al.  A semi-in-vivo preparation for optical recording of the insect brain , 1997, Journal of Neuroscience Methods.

[63]  Hölldobler,et al.  Age-dependent and task-related morphological changes in the brain and the mushroom bodies of the ant Camponotus floridanus , 1996, The Journal of experimental biology.

[64]  K. Han,et al.  Neuroanatomy: Mushrooming mushroom bodies , 1996, Current Biology.

[65]  G. Robinson,et al.  Volume Changes in the Mushroom Bodies of Adult Honey Bee Queens , 1995, Neurobiology of Learning and Memory.

[66]  M. Hammer,et al.  Learning and memory in the honeybee , 1995 .

[67]  R. Menzel,et al.  Development and experience lead to increased volume of subcompartments of the honeybee mushroom body. , 1994, Behavioral and neural biology.

[68]  M. Hammer An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees , 1993, Nature.

[69]  R. Menzel,et al.  Anatomy of the mushroom bodies in the honey bee brain: The neuronal connections of the alpha‐lobe , 1993, The Journal of comparative neurology.

[70]  G. Robinson,et al.  Selective neuroanatomical plasticity and division of labour in the honeybee , 1993, Nature.

[71]  J. Mauelshagen,et al.  Neural correlates of olfactory learning paradigms in an identified neuron in the honeybee brain. , 1993, Journal of neurophysiology.

[72]  A Borst,et al.  Drosophila mushroom body mutants are deficient in olfactory learning. , 1985, Journal of neurogenetics.

[73]  M. Bitterman,et al.  Classical conditioning of proboscis extension in honeybees (Apis mellifera). , 1983, Journal of comparative psychology.

[74]  P. Mobbs The Brain of the Honeybee Apis Mellifera. I. The Connections and Spatial Organization of the Mushroom Bodies , 1982 .

[75]  U. Homberg,et al.  Response Characteristics and Identification of Extrinsic Mushroom Body Neurons of the Bee , 1979 .

[76]  G. Berns,et al.  BAD TO WORSE , 1975, The Lancet.

[77]  F. C. Kenyon The brain of the bee. A preliminary contribution to the morphology of the nervous system of the arthropoda , 1896 .

[78]  M. Giurfa,et al.  Hydroxyurea-induced partial mushroom body ablation in the honeybee Apis mellifera: volumetric analysis and quantitative protein determination. , 2002, Journal of neurobiology.

[79]  P. Howse,et al.  Brain structure and behavior in insects. , 1975, Annual review of entomology.

[80]  H. Dodt,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .