Simulation, computational sort by using coding, softwares for elucidation of structure and for calculation of energy, force field, interactions of carbon nano tubes (CNTs)

[1]  M. Jothibas,et al.  Growth of diethyl 3,3′-[(2,4-dichlorophenyl) methylidene]bis(1H-indole-2-carboxylate)-(D32DMBC) organic NLO single crystal and its optical, thermal, mechanical, dielectric and computational studies , 2020, Journal of Materials Science: Materials in Electronics.

[2]  K. Senthilkannan,et al.  Comparison of adsorption energy, ionization potential and electron affinity of CuS-ACT and CuS-Nit nanostructures monowire for nano device fabrication by computational approach , 2020 .

[3]  V. Sivaramakrishnan,et al.  Electronic transport, HOMO–LUMO and computational studies of CuS monowire for nano device fabrication by DFT approach , 2020 .

[4]  V. Kalaipoonguzhali,et al.  Fluorescence, computational enactments of dimethyl N,N′-[(ethyne-1, 2-di-yl)Bis-(1,4-phenyl-ene carbon-yl)]bis-(l-alaninate) crystals , 2020 .

[5]  M. Kalaivani,et al.  Growth and characterization of picolinium maleate (PM) crystals , 2020 .

[6]  P. Thamaraikannan,et al.  Computational IR, Raman studies by DFT program and antidiabetic delineation by harboring of acetoacetanilide crystals , 2020 .

[7]  M. Jothibas,et al.  Computational and experimental studies of acetoacetanilide crystals , 2020 .

[8]  P. Thamaraikannan,et al.  Computational analysis of LPNPTH anisotropies for dementia for Alzheimer’s syndrome by DFT and molecular harboring , 2020 .

[9]  Houbo Yang,et al.  Molecular dynamics simulations of single-walled carbon nanotubes and polymers , 2019, Surface Innovations.

[10]  S. Periandy,et al.  Molecular structure-associated pharmacodynamic investigation on benzoyl peroxide using spectroscopic and quantum computational tools , 2018 .

[11]  S. Sriram,et al.  CO and HCHO adsorption on FeO monowire devices: a DFT study , 2017 .

[12]  S. Loganathan,et al.  Structural studies on picolinium maleate crystal by density functional methods , 2013 .

[13]  C. Wang,et al.  Buckling of double-walled carbon nanotubes modeled by solid shell elements , 2006 .

[14]  K. R. Atkinson,et al.  Strong, Transparent, Multifunctional, Carbon Nanotube Sheets , 2005, Science.

[15]  S. Sinnott,et al.  Deflection of nanotubes in response to external atomic collisions. , 2005, Nano letters.

[16]  H. P. Lee,et al.  Atomistic Simulations of Uniaxial Tensile Behaviors of Single-walled Carbon Nanotubes , 2004 .

[17]  K. M. Liew,et al.  On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation , 2004 .

[18]  Bin Liu,et al.  The atomic-scale finite element method , 2004 .

[19]  Kausala Mylvaganam,et al.  Important issues in a molecular dynamics simulation for characterising the mechanical properties of carbon nanotubes , 2004 .

[20]  L. Sudak,et al.  Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics , 2003 .

[21]  C. Q. Ru,et al.  Effect of van der Waals forces on axial buckling of a double-walled carbon nanotube , 2000 .

[22]  S. Sinnott,et al.  Molecular dynamics simulations of the filling and decorating of carbon nanotubules , 1999 .

[23]  W. D. Heer,et al.  Electrostatic deflections and electromechanical resonances of carbon nanotubes , 1999, Science.

[24]  A. Maiti,et al.  Structural flexibility of carbon nanotubes , 1996 .

[25]  M. Rubner,et al.  Molecular-Level Processing of Conjugated Polymers. 1. Layer-by-Layer Manipulation of Conjugated Polyions , 1995 .