Utility Maximisation in Incomplete Markets

In these lectures we give a short introduction to the basic concepts of Mathematical Finance, focusing on the notion of “no arbitrage”, and subsequently apply these notions to the problem of optimizing dynamically a portfolio in an incomplete financial market with respect to a given utility function U.

[1]  Jakša Cvitanić,et al.  HEDGING AND PORTFOLIO OPTIMIZATION UNDER TRANSACTION COSTS: A MARTINGALE APPROACH12 , 1996 .

[2]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[3]  Jan Kallsen,et al.  Optimal portfolios for exponential Lévy processes , 2000, Math. Methods Oper. Res..

[4]  H. Strasser Mathematical Theory of Statistics: Statistical Experiments and Asymptotic Decision Theory , 1986 .

[5]  F. Delbaen,et al.  The fundamental theorem of asset pricing for unbounded stochastic processes , 1998 .

[6]  Jakša Cvitanić,et al.  On optimal terminal wealth under transaction costs , 2001 .

[7]  Neil D. Pearson,et al.  Consumption and Portfolio Policies With Incomplete Markets and Short‐Sale Constraints: the Finite‐Dimensional Case , 1991 .

[8]  F. Delbaen,et al.  Exponential Hedging and Entropic Penalties , 2002 .

[9]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[10]  Julien Hugonnier,et al.  Optimal investment with random endowments in incomplete markets , 2004, math/0405293.

[11]  Y. Kabanov,et al.  On the optimal portfolio for the exponential utility maximization: remarks to the six‐author paper , 2002 .

[12]  Jan Kallsen,et al.  Optimal portfolios for logarithmic utility , 2000 .

[13]  Mark H. A. Davis Option Valuation and Hedging with Basis Risk , 2000 .

[14]  Nicole El Karoui,et al.  Pricing Via Utility Maximization and Entropy , 2000 .

[15]  Jak Sa Cvitani Minimizing Expected Loss of Hedging in Incomplete and Constrained Markets , 1998 .

[16]  Dirk Becherer The numeraire portfolio for unbounded semimartingales , 2001, Finance Stochastics.

[17]  S. Shreve,et al.  Optimal portfolio and consumption decisions for a “small investor” on a finite horizon , 1987 .

[18]  W. Schachermayer,et al.  The asymptotic elasticity of utility functions and optimal investment in incomplete markets , 1999 .

[19]  I. Csiszár $I$-Divergence Geometry of Probability Distributions and Minimization Problems , 1975 .

[20]  R. C. Merton,et al.  Optimum Consumption and Portfolio Rules in a Continuous-Time Model* , 1975 .

[21]  J. Harrison,et al.  Martingales and stochastic integrals in the theory of continuous trading , 1981 .

[22]  Neil D. Pearson,et al.  Consumption and portfolio policies with incomplete markets and short-sale constraints: The infinite dimensional case , 1991 .

[23]  R. C. Merton,et al.  Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case , 1969 .

[24]  F. Delbaen,et al.  A compactness principle for bounded sequences of martingales with applications , 1999 .

[25]  Hans Föllmer,et al.  Efficient hedging: Cost versus shortfall risk , 2000, Finance Stochastics.

[26]  S. Shreve,et al.  Martingale and duality methods for utility maximization in a incomplete market , 1991 .

[27]  Yuri Kabanov,et al.  A teacher's note on no-arbitrage criteria , 2001 .

[28]  W. Schachermayer The Fundamental Theorem of Asset Pricing under Proportional Transaction Costs in Finite Discrete Time , 2004 .

[29]  W. Schachermayer Optimal investment in incomplete markets when wealth may become negative , 2001 .

[30]  Stanley R. Pliska,et al.  A Stochastic Calculus Model of Continuous Trading: Optimal Portfolios , 1986, Math. Oper. Res..

[31]  J. Cox,et al.  Optimal consumption and portfolio policies when asset prices follow a diffusion process , 1989 .

[32]  Marco Frittelli,et al.  On the Existence of Minimax Martingale Measures , 2002 .

[33]  P. Samuelson LIFETIME PORTFOLIO SELECTION BY DYNAMIC STOCHASTIC PROGRAMMING , 1969 .

[34]  H. Pham,et al.  Dual formulation of the utility maximization problem under transaction costs , 2001 .

[35]  Robert Buff Continuous Time Finance , 2002 .

[36]  Jaksa Cvitanic Minimizing Expected Loss of Hedging in Incomplete and Constrained Markets , 2000, SIAM J. Control. Optim..

[37]  M. Frittelli The Minimal Entropy Martingale Measure and the Valuation Problem in Incomplete Markets , 2000 .

[38]  Anna Nagurney,et al.  Foundations of Financial Economics , 1997 .

[39]  John B. Long The numeraire portfolio , 1990 .

[40]  Christophe Stricker,et al.  Couverture des actifs contingents et prix maximum , 1994 .

[41]  L. Foldes,et al.  Conditions for Optimality in the Infinite-Horizon Portfolio-cum-Saving Problem with Semimartingale Investments , 1990 .

[42]  W. Schachermayer Portfolio optimization in incomplete financial markets , 2004 .

[43]  N. Karoui,et al.  Dynamic Programming and Pricing of Contingent Claims in an Incomplete Market , 1995 .

[44]  Hui Wang,et al.  Utility maximization in incomplete markets with random endowment , 2001, Finance Stochastics.

[45]  David M. Kreps Arbitrage and equilibrium in economies with infinitely many commodities , 1981 .

[46]  Ludger Rüschendorf,et al.  Minimax and minimal distance martingale measures and their relationship to portfolio optimization , 2001, Finance Stochastics.

[47]  H. H. Schaefer,et al.  Topological Vector Spaces , 1967 .

[48]  W. Schachermayer Optimal investment in incomplete financial markets , 2002 .

[49]  Walter Schachermayer,et al.  A super-martingale property of the optimal portfolio process , 2003, Finance Stochastics.

[50]  Utility based pricing of contingent claims , 2002 .

[51]  Walter Schachermayer,et al.  The no-arbitrage property under a change of numéraire , 1995 .

[52]  H. Weinert Ekeland, I. / Temam, R., Convex Analysis and Variational Problems. Amsterdam‐Oxford. North‐Holland Publ. Company. 1976. IX, 402 S., Dfl. 85.00. US $ 29.50 (SMAA 1) , 1979 .

[53]  Robert C. Dalang,et al.  Equivalent martingale measures and no-arbitrage in stochastic securities market models , 1990 .

[54]  John C. Cox,et al.  A variational problem arising in financial economics , 1991 .

[55]  Saul D. Jacka,et al.  A Martingale Representation Result and an Application to Incomplete Financial Markets , 1992 .

[56]  F. Delbaen,et al.  A general version of the fundamental theorem of asset pricing , 1994 .

[57]  J. Komlos A generalization of a problem of Steinhaus , 1967 .

[58]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .