The COST 720 temperature, humidity, and cloud profiling campaign: TUC

The international COST 720 Temperature, hUmidity, and Cloud (TUC) profiling experiment was organized over three months in winter 2003/2004 at Payerne, Switzerland. Various in-situ and active/passive groundbased remote sensing systems, including three microwave radiometers, a cloud radar and a wind profiler, were operated at the same location. The experiment has delivered a dataset for ground-based remote sensing measurements of winter conditions in the lower troposphere, including fog formation, development and erosion in the boundary layer. The data are being used to test atmospheric profiling products derived from integration of the various measurements. One example is fog/low cloud top and base derived from 78 GHz frequency-modulated continuous wave (FMCW) cloud radar and laser ceilometer measurements. The paper first describes the TUC experiment and the systems involved, including a brief analysis of the radiosoundings quality. An example is then used to show the ability of ground-based remote sensing systems to automatically determine the stratus base and top. Finally an overview of the publications related to the experiment is presented. Zusammenfassung Das internationale COST 720 Temperature, hUmidity and Cloud (TUC) profiling Experiment wurde wahrend drei Monaten im Winter 2003/2004 in Payerne, Schweiz, durchgefuhrt. Verschiedene in-situ- und bodengestutzte aktive/passive Fernerkundungssysteme, darunter drei Mikrowellenradiometer, ein Wolkenradar und ein Windprofiler, wurden am gleichen Ort betrieben. Das E xperiment lieferte einen Datensatz fur bodengestutzte Fernerkundungsmessungen von Winterbedingungen in der unteren Troposphare, welche die Bildung, die Entwicklung und die Auflosung von Nebel in der Gr enzschicht umfassen. Die Daten werden gebraucht, um atmospharische Profilmessungen, welche aus d er Kombination von verschiedenen Messsystemen hergeleitet werden, zu testen. Ein Beispiel ist die Bestimmung der Ober- und Untergrenze von Nebel oder tiefliegenden Wolken anhand von 78 GHz FMCW Wolkenradar und Laser Ceilometer Messungen. Der Artikel beschreibt zunachst das TUC Experiment und die darin verwendeten Messsysteme, sowie eine kurze Betrachtung zur Qualitat der Radiosondierungen. Anhand eines Beispiels wird dann die Moglichkeit gezeigt, mit bodengestutzten Fernerkundungssystemen die Nebelober- und -untergrenze automatisch zu bestimmen. Schlieslich folgt eine Ubersicht der auf das Experiment bezogenen Publikationen.

[1]  L. Vuilleumier,et al.  Characterization of Low Clouds With Satellite and Ground-Based Remote Sensing Systems , 2006 .

[2]  Frank S. Marzano,et al.  Temperature and humidity profile retrievals from ground-based microwave radiometers during TUC , 2006 .

[3]  Masato Shiotani,et al.  The Behavior of the Snow White Chilled-Mirror Hygrometer in Extremely Dry Conditions , 2003 .

[4]  Domenico Cimini,et al.  Validating clear air absorption models using ground-based microwave radiometers and vice-versa , 2006 .

[5]  S. Clough,et al.  Dry Bias and Variability in Vaisala RS80-H Radiosondes: The ARM Experience , 2003 .

[6]  L. Bianco,et al.  Evaluation of moments calculated from wind profiler spectra : A comparison between five different processing techniques , 2006 .

[7]  Artin,et al.  Intercomparison of integrated water vapour measurements , 2005 .

[8]  T. Hewison,et al.  Comparison of brightness temperatures observed from ground-based microwave radiometers during TUC , 2006 .

[9]  E. Clothiaux,et al.  Objective Determination of Cloud Heights and Radar Reflectivities Using a Combination of Active Remote Sensors at the ARM CART Sites , 2000 .

[10]  T. Hewison,et al.  Combining UHF radar wind profiler and microwave radiometer for the estimation of atmospheric humidity profiles , 2006 .

[11]  Christian Mätzler,et al.  Tropospheric water and temperature retrieval for ASMUWARA , 2006 .

[12]  D. Ruffieux,et al.  Influence of Radiation on the Temperature Sensor Mounted on the Swiss Radiosonde , 2003 .

[13]  C. Simmer,et al.  An Integrated Approach toward Retrieving Physically Consistent Profiles of Temperature, Humidity, and Cloud Liquid Water , 2004 .

[14]  Dean Lauritsen,et al.  Performance of operational radiosonde humidity sensors in direct comparison with a chilled mirror dew‐point hygrometer and its climate implication , 2003 .

[15]  Artin,et al.  Comparison of brightness temperatures observed from ground-based microwave radiometers during TUC , 2006 .

[16]  Christian Mätzler,et al.  ASMUWARA, a ground-based radiometer system for tropospheric monitoring , 2006 .

[17]  A. Feijt,et al.  THE BALTEX BRIDGE CAMPAIGN: An Integrated Approach for a Better Understanding of Clouds , 2004 .

[18]  Tim J. Hewison,et al.  Intercomparison of integrated water vapour measurements , 2006 .

[19]  ÜRGEN,et al.  Temperature and humidity profile retrievals from ground-based microwave radiometers during TUC , 2006 .

[20]  atherine,et al.  Combining UHF radar wind profiler and microwave radiometer for the estimation of atmospheric humidity profiles , 2006 .

[21]  Steven E. Koch,et al.  MULTIFUNCTIONAL MESOSCALE OBSERVING NETWORKS , 2005 .

[22]  Arc,et al.  Characterization of low clouds with satellite and ground-based remote sensing systems , 2006 .