Chemical waves in modified membranes I: developing the technique

Abstract A novel technique to fix BZ catalysts on commercially available membranes is described. Chemical waves can be observed in the membranes for more than 10 hours, when they are placed in a batch reactor. Two dimensional excitable regions of arbitrary shape can be created either by cutting the membranes or by painting these shapes on the membrane surface.

[1]  Interaction between silica gel matrices and the Belousov—Zhabotinsky reaction , 1993 .

[2]  Kenneth Showalter,et al.  Signal transmission in chemical systems: propagation of chemical waves through capillary tubes , 1994 .

[3]  B. Hess,et al.  Pattern formation in a two-dimensional reaction-diffusion system with a transversal chemical gradient , 1991 .

[4]  A. Winfree The geometry of biological time , 1991 .

[5]  Kenneth Showalter,et al.  Cross-membrane coupling of chemical spatiotemporal patterns , 1991, Nature.

[6]  W. Jahnke,et al.  Chemical vortex dynamics in three-dimensional excitable media , 1988, Nature.

[7]  E. Dulos,et al.  Turing Patterns in Confined Gel and Gel-Free Media , 1992 .

[8]  H. Swinney,et al.  Sustained chemical waves in an annular gel reactor: a chemical pinwheel , 1987, Nature.

[9]  H. Swinney,et al.  Sustained spiral waves in a continuously fed unstirred chemical reactor , 1988 .

[10]  Zoltán Noszticzius,et al.  Effect of Turing pattern indicators on CIMA oscillators , 1992 .

[11]  H. Swinney,et al.  Spacial patterns in a uniformly fed membrane reactor , 1991 .

[12]  Kenneth Showalter,et al.  Chemical waves on spherical surfaces , 1989, Nature.

[13]  A. Winfree Spiral Waves of Chemical Activity , 1972, Science.

[14]  B. Hess,et al.  Gel systems for the Belousov-Zhabotinskii reaction , 1991 .

[15]  Zoltán Noszticzius,et al.  Turing patterns visualized by index of refraction variations , 1992 .

[16]  A. Panfilov,et al.  Three-dimensional vortex with a spiral filament in a chemically active medium , 1989 .

[17]  A. Zhabotinsky,et al.  Concentration Wave Propagation in Two-dimensional Liquid-phase Self-oscillating System , 1970, Nature.

[18]  Dulos,et al.  Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. , 1990, Physical review letters.

[19]  Richard M. Noyes,et al.  Oscillations in chemical systems. V. Quantitative explanation of band migration in the Belousov-Zhabotinskii reaction , 1974 .

[20]  Zoltán Noszticzius,et al.  Spatial bistability of two-dimensional turing patterns in a reaction-diffusion system , 1992 .

[21]  A. M. Zhabotinskii,et al.  Turing structures in the ferroin-catalyzed bromate oscillation system , 1990 .

[22]  L E Scriven,et al.  Ferroin-Collodion Membranes: Dynamic Concentration Patterns in Planar Membranes , 1973, Science.

[23]  Front geometries of chemical waves under anisotropic conditions , 1991 .