Flexible germanium nanowires: ideal strength, room temperature plasticity, and bendable semiconductor fabric.

The mechanical strengths of individual germanium (Ge) nanowires with 111 growth direction and diameters ranging from 23 to 97 nm were measured by bending each with a robotic nanomanipulator in a scanning electron microscope (SEM). The nanowires tolerate diameter-dependent flexural strains of up to 17% prior to fracture, which is more than 2 orders of magnitude higher than bulk Ge. The corresponding bending strength of 18 GPa is in agreement with the ideal strength of 14-20 GPa for a perfect Ge crystal. Nanowires also exhibited plastic deformation at room temperature, becoming amorphous at the point of maximum strain. A bendable, nonwoven fabric, or paper, of Ge nanowires is demonstrated.

[1]  Xiaodong Han,et al.  Atomic mechanisms governing the elastic limit and the incipient plasticity of bending Si nanowires. , 2009, Nano letters.

[2]  Harold S. Park,et al.  Mechanics of Crystalline Nanowires , 2009 .

[3]  Thierry Baron,et al.  Size effects in mechanical deformation and fracture of cantilevered silicon nanowires. , 2009, Nano letters.

[4]  Wenjie Mai,et al.  Elastic Properties and Buckling of Silicon Nanowires , 2008 .

[5]  Damon A. Smith,et al.  Young’s Modulus and Size-Dependent Mechanical Quality Factor of Nanoelectromechanical Germanium Nanowire Resonators , 2008 .

[6]  X. Han,et al.  Low‐Temperature In Situ Large‐Strain Plasticity of Silicon Nanowires , 2007, Advanced Materials.

[7]  M. Swain,et al.  Giant pop-ins and amorphization in germanium during indentation , 2007 .

[8]  B. Korgel,et al.  Lamellar twinning in semiconductor nanowires , 2007 .

[9]  R. Rudd,et al.  First-principles study of the Young’s modulus of Si ⟨001⟩ nanowires , 2006, cond-mat/0611073.

[10]  Cor L. Claeys,et al.  Germanium-based technologies : from materials to devices , 2007 .

[11]  J. Boland,et al.  Ultimate-strength germanium nanowires. , 2006, Nano letters.

[12]  P. Yang,et al.  Giant piezoresistance effect in silicon nanowires , 2006, Nature nanotechnology.

[13]  Christophe Ballif,et al.  Measurement of the bending strength of vapor-liquid-solid grown silicon nanowires. , 2006, Nano letters.

[14]  R. Williams,et al.  Mechanical properties of self-welded silicon nanobridges , 2005 .

[15]  Bin Wu,et al.  Mechanical properties of ultrahigh-strength gold nanowires , 2005, Nature materials.

[16]  Tobias Hanrath,et al.  Chemical surface passivation of Ge nanowires. , 2004, Journal of the American Chemical Society.

[17]  Madhu Menon,et al.  Nanomechanics of silicon nanowires , 2004 .

[18]  Joshua E. Goldberger,et al.  SEMICONDUCTOR NANOWIRES AND NANOTUBES , 2004 .

[19]  Gregory J. Wagner,et al.  Mechanical resonance of quartz microfibers and boundary condition effects , 2004 .

[20]  Dong Qian,et al.  Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements , 2003 .

[21]  Brian A. Korgel,et al.  Supercritical Fluid–Liquid–Solid (SFLS) Synthesis of Si and Ge Nanowires Seeded by Colloidal Metal Nanocrystals , 2003 .

[22]  B. Korgel,et al.  Nucleation and growth of germanium nanowires seeded by organic monolayer-coated gold nanocrystals. , 2002, Journal of the American Chemical Society.

[23]  Marvin L. Cohen,et al.  Ideal strength of diamond, Si, and Ge , 2001 .

[24]  Y. Isono,et al.  Evaluation of size effect on mechanical properties of single crystal silicon by nanoscale bending test using AFM , 2000, Journal of Microelectromechanical Systems.

[25]  Y. Haddad,et al.  Mechanical behaviour of engineering materials , 2000 .

[26]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[27]  Rodney S. Ruoff,et al.  Mechanical and thermal properties of carbon nanotubes , 1995 .

[28]  K. Malloy,et al.  The Mechanical Properties of Semiconductors , 1992 .

[29]  L. L. Boyle Dislocations in solids. Vol. 1. The elastic theory edited by F. R. N. Nabarro , 1981 .

[30]  W. Nix,et al.  The Principles of Engineering Materials , 1973 .

[31]  N. H. Macmillan,et al.  The theoretical strength of solids , 1972 .

[32]  G. L. Pearson,et al.  Deformation and fracture of small silicon crystals , 1957 .