Extraction of parallel vector surfaces in 3D time-dependent fields and application to vortex core line tracking

We introduce an approach to tracking vortex core lines in time-dependent 3D flow fields which are defined by the parallel vectors approach. They build surface structures in the 4D space-time domain. To extract them, we introduce two 4D vector fields which act as feature flow fields, i.e., their integration gives the vortex core structures. As part of this approach, we extract and classify local bifurcations of vortex core lines in space-time. Based on a 4D stream surface integration, we provide an algorithm to extract the complete vortex core structure. We apply our technique to a number of test data sets.

[1]  Jinhee Jeong,et al.  On the identification of a vortex , 1995, Journal of Fluid Mechanics.

[2]  Hans-Peter Seidel,et al.  Boundary switch connectors for topological visualization of complex 3D vector fields , 2004, VISSYM'04.

[3]  B. R. Noack,et al.  A low‐dimensional Galerkin method for the three‐dimensional flow around a circular cylinder , 1994 .

[4]  Hans Hagen,et al.  A tetrahedra-based stream surface algorithm , 2001, Proceedings Visualization, 2001. VIS '01..

[5]  Ronald Peikert,et al.  The "Parallel Vectors" operator-a vector field visualization primitive , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[6]  Robert S. Laramee,et al.  Feature Extraction and Visualisation of Flow Fields , 2002, Eurographics.

[7]  Ronald Peikert,et al.  Vortex Tracking in Scale-Space , 2002, VisSym.

[8]  D. Sujudi,et al.  Identification of Swirling Flow in 3-D Vector Fields , 1995 .

[9]  David C. Banks,et al.  A Predictor-Corrector Technique for Visualizing Unsteady Flow , 1995, IEEE Trans. Vis. Comput. Graph..

[10]  Gérard G. Medioni,et al.  Extremal feature extraction from 3-D vector and noisy scalar fields , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[11]  Hans-Peter Seidel,et al.  Stream line and path line oriented topology for 2D time-dependent vector fields , 2004, IEEE Visualization 2004.

[12]  Hans-Christian Hege,et al.  Eurographics -ieee Vgtc Symposium on Visualization (2005) Galilean Invariant Extraction and Iconic Representation of Vortex Core Lines , 2022 .

[13]  Jarke J. van Wijk Implicit Stream Surfaces , 1993, IEEE Visualization.

[14]  J. Hunt Vorticity and vortex dynamics in complex turbulent flows , 1987 .

[15]  B. R. Noack,et al.  On the transition of the cylinder wake , 1995 .

[16]  Ronald Peikert,et al.  A higher-order method for finding vortex core lines , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[17]  Lambertus Hesselink,et al.  Representation and display of vector field topology in fluid flow data sets , 1989, Computer.

[18]  Hans Hagen,et al.  Topology-Based Visualization of Time-Dependent 2D Vector Fields , 2001, VisSym.

[19]  Hans-Christian Hege,et al.  amira: A Highly Interactive System for Visual Data Analysis , 2005, The Visualization Handbook.

[20]  Mie Sato,et al.  Core-Line-Based Vortex Hulls in Turbomachinery Flows , 2003 .

[21]  H. Miura,et al.  Identification of Tubular Vortices in Turbulence , 1997 .

[22]  J. Thirion,et al.  The 3D marching lines algorithm and its application to crest lines extraction , 1992 .

[23]  Hans-Peter Seidel,et al.  Feature Flow Fields , 2003, VisSym.

[24]  David C. Banks,et al.  Vortex tubes in turbulent flows: identification, representation, reconstruction , 1994, Proceedings Visualization '94.

[25]  Allen Van Gelder Stream Surface Generation for Fluid Flow Solutions on Curvilinear Grids , 2001, VisSym.

[26]  Jeff P. Hultquist,et al.  Constructing stream surfaces in steady 3D vector fields , 1992, Proceedings Visualization '92.

[27]  Gerik Scheuermann,et al.  Detection and Visualization of Closed Streamlines in Planar Flows , 2001, IEEE Trans. Vis. Comput. Graph..