A study of an up- and a down-pumping wide-blade hydrofoil impeller : Part II. CFD analysis

Two different ways of using CFD to determine the flow field produced by the complex, wide-blade hydrofoil APV-B2 impeller are presented. The use of the “sliding mesh” approach was not successful and the reasons are discussed. Details of the numerical solution of the momentum transfer equations are described for the case of an axially-symmetrical jet model. The flow field for the single impeller pumping either upwards or downwards at 200 rpm was simulated using the structured Fluent code. Good agreement of CFD predictions with LDA velocity data was found, though the maximum local energy dissipation rate was 2 1/2 to 5 times lower than was estimated from the experiments. The power numbers predicted by CFD were slightly higher than those obtained experimentally. The flow fields for dual and triple impellers pumping upwards were also simulated and used to guide larger scale homogenisation experiments. On presente deux facons differentes d'utiliser la CFD pour determiner le champ d'ecoulement produit par une turbine profilee complexe APV-B2 a larges pales. Le recours a “maillage glissant” n'a pas reussi et on en analyse les raisons. Les donnees de la solution numerique des equations de transfert de moment sont decrites en detail prou le cas du modele a jet axialement symetrique. Le champ d'ecoulement du pompage d'une turbine unique dans le sens soit ascendant ou descendant a 200 tr/min a ete simule a l'aide du code Fluent structure. Un bon accord est obtenu entre les predictions de la CFD et les donnees de vitesses de la LDA, bien que le taux de dissipation de l'energie locale maximale soit de 2 fois 1/2 a 5 fois plus petit que celui estime dans les experiences. Les nombres de puissance predits par la CFD sont legerement plus grands que ceux obtenus experimentalement. Les champs d'ecoulement pour des turbines doubles et triples a pompage ascendant ont egalement ete simules et utilises pour guider des experiences d'homogeneisation a plus grande echelle.

[1]  Alvin W. Nienow,et al.  Sliding mesh computational fluid dynamics—a predictive tool in stirred tank design , 1997 .

[2]  H. V. D. Akker,et al.  A Computational Study on Dispersing Gas in a Stirred Reactor , 1992 .

[3]  Vivek V. Ranade,et al.  Flow generated by a disc turbine. II: Mathematical modelling and comparison with experimental data , 1990 .

[4]  Vivek V. Ranade,et al.  FLOW GENERATED BY PITCHED BLADE TURBINES II: SIMULATION USING κ-ε MODEL , 1989 .

[5]  Kevin J. Myers,et al.  A Digital Particle Image Velocimetry Investigation of Flow Field Instabilities of Axial-Flow Impellers , 1997 .

[6]  J. C. Middleton,et al.  Computations of flow fields and complex reaction yield in turbulent stirred reactors, and comparison with experimental data , 1986 .

[7]  A. D. Gosman,et al.  Full flow field computation of mixing in baffled stirred vessels , 1993 .

[8]  M. Perić,et al.  FINITE VOLUME METHOD FOR PREDICTION OF FLUID FLOW IN ARBITRARILY SHAPED DOMAINS WITH MOVING BOUNDARIES , 1990 .

[9]  Alvin W. Nienow,et al.  Gas-liquid mixing studies : A comparison of Rushton turbines with some modern impellers , 1996 .

[10]  C. K. Harris,et al.  Computational Fluid Dynamics for Chemical Reactor Engineering , 1996 .

[11]  Alvin W. Nienow,et al.  A study of an up‐ and a down‐pumping wide blade hydrofoil impeller: Part I. LDA measurements , 1998 .

[12]  Stuart E. Rogers,et al.  Steady-state modeling and experimental measurement of a baffled impeller stirred tank , 1995 .