FTIR reflectance of selected minerals and their mixtures: implications for ground temperature-sensor monitoring on Mars surface environment (NASA/MSL-Rover Environmental Monitoring Station).
暂无分享,去创建一个
Javier Gómez-Elvira | Jesus Martinez-Frias | Carlos Armiens | J. Gómez-Elvira | J. Martínez-Frías | M Paz Martín-Redondo | Eduardo Sebastian Martínez | M Teresa Fernández Sampedro | C. Armiens | E. Martínez | M. Martin-Redondo | M. F. Sampedro | M. Martín-Redondo | Eduardo Sebastian Mart́ınez
[1] Visible-near infrared point spectrometry of drill core samples from Río Tinto, Spain: results from the 2005 Mars Astrobiology Research and Technology Experiment (MARTE) drilling exercise. , 2008, Astrobiology.
[2] E. Palomba,et al. Infrared reflectance spectroscopy of Martian analogues , 2000 .
[3] J. Mustard,et al. Estimating the water content of hydrated minerals using reflectance spectroscopy I. Effects of darkening agents and low-albedo materials , 2007 .
[4] Joshua L. Bandfield,et al. Global mineral distributions on Mars , 2002 .
[5] R. Wogelius,et al. Mineral surface reactivity and mass transfer in environmental mineralogy , 2007 .
[6] John F. Mustard,et al. Orbital Identification of Carbonate-Bearing Rocks on Mars , 2008 .
[7] Emmanuel Lellouch,et al. A determination of albedos and surface temperatures on Mars from ground-based infrared spectroscopy , 1991 .
[8] M. Querry,et al. Wedge shaped cell for highly absorbent liquids: infrared optical constants of water. , 1989, Applied optics.
[9] R. Frost,et al. Sulphate efflorescent minerals from El Jaroso Ravine, Sierra Almagrera--An SEM and Raman spectroscopic study. , 2007, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
[10] M. Pietroletti,et al. APPLICATION OF FTIR SPECTROSCOPY IN ECOTOXICOLOGICAL STUDIES SUPPORTED BY MULTIVARIATE ANALYSIS AND 2D CORRELATION SPECTROSCOPY , 2007 .
[11] Astrobiological significance of minerals on Mars surface environment , 2005, physics/0512140.
[12] E. Smidt,et al. Investigation of 15-year-old municipal solid waste deposit profiles by means of FTIR spectroscopy and thermal analysis. , 2007, Journal of environmental monitoring : JEM.
[13] M. Banaszkiewicz,et al. Mupus – A Thermal and Mechanical Properties Probe for the Rosetta Lander Philae , 2007 .
[14] A. Estéve-Núñez,et al. Geomarkers versus Biomarkers: Paleoenvironmental and Astrobiological Significance , 2007, Ambio.
[15] E. Cloutis,et al. Spectral reflectance properties of minerals exposed to simulated Mars surface conditions , 2008 .
[16] Ronald Greeley. NASA TECHNICAL MEMORANDUM , 2008 .
[17] K. Hand,et al. Fourier transform infrared spectroscopy for Mars science , 2005 .
[18] G. Neugebauer,et al. Infrared thermal mapping experiment: The Viking Mars orbiter , 1972 .
[19] Bin Chen,et al. The 2005 MARTE Robotic Drilling Experiment in Río Tinto, Spain: objectives, approach, and results of a simulated mission to search for life in the Martian subsurface. , 2008, Astrobiology.
[20] R. Frost,et al. Sulphate Efflorescent Minerals from the El Jaroso Ravine, Sierra Almagrera, Spain—A Scanning Electron Microscopic and Infrared Spectroscopic Study , 2006 .
[21] Robert B. Singer,et al. Mars surface composition from reflectance spectroscopy: A summary , 1979 .
[22] J. A. Rodríguez-Losada,et al. The volcanism-related multistage hydrothermal system of El Jaroso (SE Spain): Implications for the exploration of Mars , 2004 .