On the Numerical Approximation of the Karhunen-Loève Expansion for Lognormal Random Fields

The Karhunen-Loeve (KL) expansion is a popular method for approximating random fields by transforming an infinite-dimensional stochastic domain into a finite-dimensional parameter space. Its numerical approximation is of central importance to the study of PDEs with random coefficients. In this work, we analyze the approximation error of the Karhunen-Loeve expansion for lognormal random fields. We derive error estimates that allow the optimal balancing of the truncation error of the expansion, the Quasi Monte-Carlo error for sampling in the stochastic domain and the numerical approximation error in the physical domain. The estimate is given in the number $M$ of terms maintained in the KL expansion, in the number of sampling points $N$, and in the discretization mesh size $h$ in the physical domain employed in the numerical solution of the eigenvalue problems during the expansion. The result is used to quantify the error in PDEs with random coefficients. We complete the theoretical analysis with numerical experiments in one and multiple stochastic dimensions.

[1]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[2]  Albert Cohen,et al.  Fully Discrete Approximation of Parametric and Stochastic Elliptic PDEs , 2017, SIAM J. Numer. Anal..

[3]  Vladimir N. Temlyakov,et al.  Hyperbolic Cross Approximation , 2016, 1601.03978.

[4]  A. Pietsch Eigenvalues and S-Numbers , 1987 .

[5]  A. Bonami,et al.  Uniform Approximation and Explicit Estimates for the Prolate Spheroidal Wave Functions , 2014, 1405.3676.

[6]  Michael Griebel,et al.  An Adaptive Multiscale Approach for Electronic Structure Methods , 2016, Multiscale Model. Simul..

[7]  S. Agmon Lectures on Elliptic Boundary Value Problems , 1965 .

[8]  Christoph Schwab,et al.  Karhunen-Loève approximation of random fields by generalized fast multipole methods , 2006, J. Comput. Phys..

[9]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[10]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[11]  I. Sloan,et al.  On the expected uniform error of geometric Brownian motion approximated by the L\'evy-Ciesielski construction , 2017, 1706.00915.

[12]  James A. Nichols,et al.  Fast CBC construction of randomly shifted lattice rules achieving O(n-1+δ) convergence for unbounded integrands over R5 in weighted spaces with POD weights , 2014, J. Complex..

[13]  Albert Cohen,et al.  Representations of Gaussian Random Fields and Approximation of Elliptic PDEs with Lognormal Coefficients , 2016, Journal of Fourier Analysis and Applications.

[14]  Frances Y. Kuo,et al.  Multilevel Quasi-Monte Carlo methods for lognormal diffusion problems , 2015, Math. Comput..

[15]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[16]  Guanglian Li,et al.  On the Decay Rate of the Singular Values of Bivariate Functions , 2018, SIAM J. Numer. Anal..

[17]  Julia Charrier,et al.  Strong and Weak Error Estimates for Elliptic Partial Differential Equations with Random Coefficients , 2012, SIAM J. Numer. Anal..

[18]  Louis J. Durlofsky,et al.  A New Data-Space Inversion Procedure for Efficient Uncertainty Quantification in Subsurface Flow Problems , 2017, Mathematical Geosciences.

[19]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[20]  Radu Alexandru Todor,et al.  Robust Eigenvalue Computation for Smoothing Operators , 2006, SIAM J. Numer. Anal..

[21]  G. Burton Sobolev Spaces , 2013 .

[22]  M. Griebel,et al.  Singular value decomposition versus sparse grids: refined complexity estimates , 2018, IMA Journal of Numerical Analysis.

[23]  Frances Y. Kuo,et al.  High-dimensional integration: The quasi-Monte Carlo way*† , 2013, Acta Numerica.

[24]  Albert Cohen,et al.  Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs , 2010, Found. Comput. Math..