Hybrid SCA–TLBO: a novel optimization algorithm for global optimization and visual tracking

A novel optimization algorithm called hybrid sine–cosine algorithm with teaching–learning-based optimization algorithm (SCA–TLBO) is proposed in this paper, for solving optimization problems and visual tracking. The proposed hybrid algorithm has better capability to escape from local optima with faster convergence than the standard SCA and TLBO. The effectiveness of this algorithm is evaluated using 23 benchmark functions. Statistical parameters are employed to observe the efficiency of the hybrid SCA–TLBO qualitatively, and results prove that the proposed algorithm is very competitive compared to the state-of-the-art metaheuristic algorithms. The hybrid SCA–TLBO algorithm is applied for visual tracking as a real thought-provoking case study. The hybrid SCA–TLBO-based tracking framework is used to experimentally measure object tracking error, absolute error, tracking detection rate, root mean square error and time cost as parameters. To reveal the capability of the proposed algorithm, a comparison of hybrid SCA–TLBO-based tracking framework and other trackers, viz. alpha–beta filter, linear Kalman filter and extended Kalman filter, particle filter, scale-invariant feature transform, particle swarm optimization and bat algorithm, is presented.

[1]  Bilal Alatas,et al.  ACROA: Artificial Chemical Reaction Optimization Algorithm for global optimization , 2011, Expert Syst. Appl..

[2]  Ardeshir Bahreininejad,et al.  Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems , 2013, Appl. Soft Comput..

[3]  Ebrahim Babaei,et al.  Exchange market algorithm for economic load dispatch , 2016 .

[4]  Christian Blum,et al.  Hybrid Metaheuristics: An Introduction , 2008, Hybrid Metaheuristics.

[5]  Minghao Yin,et al.  Animal migration optimization: an optimization algorithm inspired by animal migration behavior , 2014, Neural Computing and Applications.

[6]  Alireza Sokhandan,et al.  A novel biologically inspired computational framework for visual tracking task , 2016, BICA 2016.

[7]  Thomas Bäck,et al.  Mixed Integer Evolution Strategies for Parameter Optimization , 2013, Evolutionary Computation.

[8]  Hamed Shah-Hosseini,et al.  Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimisation , 2011, Int. J. Comput. Sci. Eng..

[9]  Chaohua Dai,et al.  Seeker Optimization Algorithm , 2006, 2006 International Conference on Computational Intelligence and Security.

[10]  Irene Y. H. Gu,et al.  Robust Visual Object Tracking Using Multi-Mode Anisotropic Mean Shift and Particle Filters , 2011, IEEE Transactions on Circuits and Systems for Video Technology.

[11]  Dorothy Ndedi Monekosso,et al.  A particle swarm optimisation algorithm with interactive swarms for tracking multiple targets , 2013, Appl. Soft Comput..

[12]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[13]  Naser Moosavian,et al.  Soccer league competition algorithm: A novel meta-heuristic algorithm for optimal design of water distribution networks , 2014, Swarm Evol. Comput..

[14]  Xiaodong Wu,et al.  Small-World Optimization Algorithm for Function Optimization , 2006, ICNC.

[15]  Andrea Sanna,et al.  A Genetic Algorithm for Target Tracking in FLIR Video Sequences Using Intensity Variation Function , 2009, IEEE Transactions on Instrumentation and Measurement.

[16]  G. Chakraborty,et al.  Genetic programming for a class of constrained optimization problems , 1999, IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028).

[17]  Wei Liu,et al.  A novel visual tracking method using bat algorithm , 2016, Neurocomputing.

[18]  Ali Kaveh,et al.  Colliding bodies optimization: A novel meta-heuristic method , 2014 .

[19]  Seyedmohsen Hosseini,et al.  A survey on the Imperialist Competitive Algorithm metaheuristic: Implementation in engineering domain and directions for future research , 2014, Appl. Soft Comput..

[20]  D. Simon Kalman filtering with state constraints: a survey of linear and nonlinear algorithms , 2010 .

[21]  M. Marchesi,et al.  Tabu Search metaheuristics for global optimization of electromagnetic problems , 1998 .

[22]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[23]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Tobias Bjerregaard,et al.  A survey of research and practices of Network-on-chip , 2006, CSUR.

[25]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[26]  A. Kaveh,et al.  A new meta-heuristic method: Ray Optimization , 2012 .

[27]  Rafael S. Parpinelli,et al.  New inspirations in swarm intelligence: a survey , 2011, Int. J. Bio Inspired Comput..

[28]  Q. Henry Wu,et al.  Group Search Optimizer: An Optimization Algorithm Inspired by Animal Searching Behavior , 2009, IEEE Transactions on Evolutionary Computation.

[29]  Richard A. Formato,et al.  CENTRAL FORCE OPTIMIZATION: A NEW META-HEURISTIC WITH APPLICATIONS IN APPLIED ELECTROMAGNETICS , 2007 .

[30]  Shailesh Tiwari,et al.  Physics-Inspired Optimization Algorithms: A Survey , 2013 .

[31]  Shah-HosseiniHamed Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimisation , 2011 .

[32]  David Frederic Crouse A General Solution to Optimal Fixed-Gain (α-β-γ etc.) Filters , 2015, IEEE Signal Process. Lett..

[33]  M. M. Fahmy,et al.  Group Counseling Optimization: A Novel Approach , 2009, SGAI Conf..

[34]  Xin-She Yang,et al.  A literature survey of benchmark functions for global optimisation problems , 2013, Int. J. Math. Model. Numer. Optimisation.

[35]  Ali Husseinzadeh Kashan,et al.  An efficient algorithm for constrained global optimization and application to mechanical engineering design: League championship algorithm (LCA) , 2011, Comput. Aided Des..

[36]  Wei Liu,et al.  Visual tracking method based on cuckoo search algorithm , 2015 .

[37]  Marjan Mernik,et al.  Exploration and exploitation in evolutionary algorithms: A survey , 2013, CSUR.

[38]  Sheldon H. Jacobson,et al.  A convergence analysis of generalized hill climbing algorithms , 2001, IEEE Trans. Autom. Control..

[39]  Rob A. Rutenbar,et al.  Simulated annealing algorithms: an overview , 1989, IEEE Circuits and Devices Magazine.

[40]  Ying Tan,et al.  Fireworks Algorithm for Optimization , 2010, ICSI.

[41]  R. Venkata Rao,et al.  Teaching-Learning-Based Optimization: An optimization method for continuous non-linear large scale problems , 2012, Inf. Sci..

[42]  Shahriar Lotfi,et al.  Social-Based Algorithm (SBA) , 2013, Appl. Soft Comput..

[43]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms in Engineering Applications , 1997, Springer Berlin Heidelberg.

[44]  Wei Chen,et al.  Robust visual tracking via patch based kernel correlation filters with adaptive multiple feature ensemble , 2016, Neurocomputing.

[45]  Ling Shao,et al.  Recent advances and trends in visual tracking: A review , 2011, Neurocomputing.

[46]  R. Venkata Rao,et al.  Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems , 2011, Comput. Aided Des..

[47]  Seyedali Mirjalili,et al.  SCA: A Sine Cosine Algorithm for solving optimization problems , 2016, Knowl. Based Syst..

[48]  Tapabrata Ray,et al.  A simulated annealing algorithm for constrained Multi-Objective Optimization , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[49]  Huiyu Zhou,et al.  Object tracking using SIFT features and mean shift , 2009, Comput. Vis. Image Underst..

[50]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[51]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[52]  S. G. Ponnambalam,et al.  Charged system search algorithm for robotic drill path optimization , 2015, 2015 International Conference on Advanced Mechatronic Systems (ICAMechS).

[53]  Dan Simon,et al.  Biogeography-Based Optimization , 2022 .

[54]  Nan Jiang,et al.  Online similarity learning for visual tracking , 2016, Inf. Sci..

[55]  Ming-Hsuan Yang,et al.  Object Tracking Benchmark , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[56]  Hossein Nezamabadi-pour,et al.  GSA: A Gravitational Search Algorithm , 2009, Inf. Sci..

[57]  Francisco Herrera,et al.  A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms , 2011, Swarm Evol. Comput..

[58]  HosseiniSeyedmohsen,et al.  A survey on the Imperialist Competitive Algorithm metaheuristic , 2014 .

[59]  Vibhav Vineet,et al.  Struck: Structured Output Tracking with Kernels , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.