Observational calibration of the projection factor of Cepheids - I. The type II Cepheid κ Pavonis

Context. The distance of pulsating stars, in particular Cepheids, are commonly measured using the parallax of pulsation technique. The di erent versions of this technique combine measurements of the linear diameter variation (from spectroscopy) and the angular diameter variation (from photometry or interferometry) amplitudes, to retrieve the distance in a quasi-geometrical way. However, the linear diameter amplitude is directly proportional to the projection factor (hereafter p-factor), which is used to convert spectroscopic radial velocities (i.e., disk integrated) into pulsating (i.e., photospheric) velocities. The value of the p-factor and its possible dependence on the pulsation period are still widely debated. Aims. Our goal is to measure an observational value of the p-factor of the type-II Cepheid Pavonis. Methods. The parallax of the type-II Cepheid Pav was measured with an accuracy of 5% using HST/FGS. We used this parallax as a starting point to derive the p-factor of Pav, using the SPIPS technique (Spectro-Photo-Interferometry of Pulsating Stars), which is a robust version of the parallax-of-pulsation method that employs radial velocity, interferometric and photometric data. We applied this technique to a combination of new VLTI/PIONIER optical interferometric angular diameters, new CORALIE and HARPS radial velocities, as well as multi-colour photometry and radial velocities from the literature. Results. We obtain a value of p = 1:26 0:07 for the p-factor of Pav. This result agrees with several of the recently derived Periodp-factor relationships from the literature, as well as previous observational determinations for Cepheids. Conclusions. Individual estimates of the p-factor are fundamental to calibrating the parallax of pulsation distances of Cepheids. Together with previous observational estimates, the projection factor we obtain points to a weak dependence of the p-factor on period.

[1]  C. Ngeow,et al.  Calibrating the projection factor for Galactic Cepheids , 2012, 1206.1895.

[2]  W. Baade,et al.  Über eine Möglichkeit, die Pulsationstheorie der δ Cephei‐Veränderlichen zu prüfen , 1926 .

[3]  A. Eddington,et al.  Irregularities of Period of Long-Period Variable Stars , 1929 .

[4]  M. Groenewegen The projection factor, period–radius relation, and surface–brightness colour relation in classical cepheids , 2007 .

[5]  Michael W. Feast,et al.  The Luminosities and Distance Scales of Type II Cepheid and RR Lyrae variables , 2008, 0803.0466.

[6]  M. A. C. Perryman,et al.  The Hipparcos and Tycho catalogues : astrometric and photometric star catalogues derived from the ESA Hipparcos Space Astrometry Mission , 1997 .

[7]  Adam G. Riess,et al.  Observational probes of cosmic acceleration , 2012, 1201.2434.

[8]  Observations of Cepheids with the MOST satellite: contrast between pulsation modes , 2014, 1411.1730.

[9]  P. Flower,et al.  Transformations from Theoretical Hertzsprung-Russell Diagrams to Color-Magnitude Diagrams: Effective Temperatures, B-V Colors, and Bolometric Corrections , 1996 .

[10]  Tuning in on Cepheids: Radial velocity amplitude modulations - A source of systematic uncertainty for Baade-Wesselink distances , 2014, 1406.2605.

[11]  G. Montagnier,et al.  PIONIER: a 4-telescope visitor instrument at VLTI , 2011, 1109.1918.

[12]  Nicole Nesvacil,et al.  DISTANCE SCALE ZERO POINTS FROM GALACTIC RR LYRAE STAR PARALLAXES , 2011, 1109.5631.

[13]  Michel Mayor,et al.  ELODIE: A spectrograph for accurate radial velocity measurements , 1996 .

[14]  L. Szabados,et al.  Multiplicity of Galactic Cepheids from long-baseline interferometry I. CHARA/MIRC detection of the companion of V1334 Cygni , 2013, 1302.1817.

[15]  C. A. Oxborrow,et al.  Planck intermediate results XVI. Profile likelihoods for cosmological parameters , 2013, 1311.1657.

[16]  Pierre Kervella,et al.  The circumstellar envelopes of the Cepheids $\mathsf{\ell}$ Carinae and RS Puppis - Comparative study in the infrared with Spitzer, VLT/VISIR, and VLTI/MIDI , 2009, 0902.1588.

[17]  Calibrating the Cepheid Period-Luminosity relation from the near-infrared surface brightness technique , 2012 .

[18]  Edward L. Fitzpatrick,et al.  Correcting for the Effects of Interstellar Extinction , 1998, astro-ph/9809387.

[19]  George Wallerstein,et al.  The Cepheids of Population II and Related Stars , 2002 .

[20]  P. Kervella,et al.  The IPoP method to measure Cepheid distances , 2013, Proceedings of the International Astronomical Union.

[21]  Pascal Bordé,et al.  A catalog of bright calibrator stars for 200-m baseline near-infrared stellar interferometry , 2004, astro-ph/0412251.

[22]  S. T. Ridgway,et al.  First Results from the CHARA Array. II. A Description of the Instrument , 2005 .

[23]  D. Queloz,et al.  The CORALIE survey for southern extra-solar planets VII - Two short-period Saturnian companions to HD 108147 and HD 168746 , 2002, astro-ph/0202457.

[24]  M. Feast,et al.  Period–luminosity relations for type II Cepheids and their application , 2009, 0904.4701.

[25]  W. Gieren,et al.  The Araucaria Project: the Baade-Wesselink projection factor of pulsating stars , 2013, Proceedings of the International Astronomical Union.

[26]  Potsdam,et al.  Calibrating The Cepheid Period-Luminosity Relation From The Infrared Surface Brightness Technique I. The P-Factor, The Milky Way Relations, And A Universal K-Band Relation , 2011, 1109.2017.

[27]  E. Pickering,et al.  Periods of 25 Variable Stars in the Small Magellanic Cloud. , 1912 .

[28]  B. Pilecki,et al.  Multiplicity of Galactic Cepheids from long-baseline interferometry - II. The Companion of AX Circini revealed with VLTI/PIONIER , 2013, 1312.1950.

[29]  A. Merand,et al.  A catalog of bright calibrator stars for 200-m baseline near-infrared stellar interferometry , 2005 .

[30]  G. Wallerstein,et al.  Metallic-line and Hα radial velocities of seven southern Cepheids : a comparative analysis , 1992 .

[31]  Pierre Kervella,et al.  The projection factor of δ Cephei A calibration of the Baade-Wesselink method using the CHARA Array , 2005 .

[32]  D. Bersier,et al.  The long-period Galactic Cepheid RS Puppis - III. A geometric distance from HST polarimetric imaging of its light echoes , 2014, 1408.1697.

[33]  Zoltan Balog,et al.  Baade-Wesselink radius determination of Type II Cepheids , 1997 .

[34]  T. Jacobsen The radial velocity curve of the Cepheid variable [kappa] Pavonis , 1929 .

[35]  R. Kurucz Model atmospheres for G, F, A, B, and O stars , 1979 .

[36]  W. Gieren,et al.  High-resolution spectroscopy for Cepheids distance determination V. Impact of the cross-correlation method on the p-factor and the γ-velocities , 2009, 0905.4540.

[37]  F. Castelli,et al.  Round Table Summary: Problems in Modelling Stellar Atmospheres , 2003 .

[38]  P. Kervella,et al.  Thermal infrared properties of classical and type II Cepheids - Diffraction limited 10 μm imaging with VLT/VISIR , 2011, 1111.7215.

[39]  Laurent Jocou,et al.  Searching for faint companions with VLTI/PIONIER. I. Method and first results , 2011, 1110.1178.

[40]  M. Groenewegen Baade-Wesselink distances to Galactic and Magellanic Cloud Cepheids and the effect of metallicity , 2012, 1212.5478.

[41]  C. Ngeow,et al.  Cepheid limb darkening, angular diameter corrections, and projection factor from static spherical model stellar atmospheres , 2012, 1203.3552.

[42]  P. Kervella,et al.  Toward improving the accuracy of Cepheid distances through parallax of pulsation , 2012, Proceedings of the International Astronomical Union.

[43]  B. Madore,et al.  Physical parameters and the projection factor of the classical Cepheid in the binary system OGLE-LMC-CEP-0227 , 2013, 1308.5023.

[44]  Stefano Casertano,et al.  A 3% SOLUTION: DETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE AND WIDE FIELD CAMERA 3 , 2011, 1103.2976.