Subspace Clustering Using Log-determinant Rank Approximation

A number of machine learning and computer vision problems, such as matrix completion and subspace clustering, require a matrix to be of low-rank. To meet this requirement, most existing methods use the nuclear norm as a convex proxy of the rank function and minimize it. However, the nuclear norm simply adds all nonzero singular values together instead of treating them equally as the rank function does, which may not be a good rank approximation when some singular values are very large. To reduce this undesirable weighting effect, we use a log-determinant function as a non-convex rank approximation which reduces the contributions of large singular values while keeping those of small singular values close to zero. We apply the method of augmented Lagrangian multipliers to optimize this non-convex rank approximation-based objective function and obtain closed-form solutions for all subproblems of minimizing different variables alternatively. The log-determinant low-rank optimization method is used to solve subspace clustering problem, for which we construct an affinity matrix based on the angular information of the low-rank representation to enhance its separability property. Extensive experimental results on face clustering and motion segmentation data demonstrate the effectiveness of the proposed method.

[1]  René Vidal,et al.  A closed form solution to robust subspace estimation and clustering , 2011, CVPR 2011.

[2]  Guangliang Chen,et al.  Spectral Curvature Clustering (SCC) , 2009, International Journal of Computer Vision.

[3]  Feiping Nie,et al.  Robust Manifold Nonnegative Matrix Factorization , 2014, ACM Trans. Knowl. Discov. Data.

[4]  P. Tseng Nearest q-Flat to m Points , 2000 .

[5]  T. Boult,et al.  Factorization-based segmentation of motions , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[6]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[7]  Kenichi Kanatani,et al.  Motion segmentation by subspace separation and model selection , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[8]  Christopher M. Bishop,et al.  Mixtures of Probabilistic Principal Component Analyzers , 1999, Neural Computation.

[9]  Allen Y. Yang,et al.  Estimation of Subspace Arrangements with Applications in Modeling and Segmenting Mixed Data , 2008, SIAM Rev..

[10]  René Vidal,et al.  Sparse Subspace Clustering: Algorithm, Theory, and Applications , 2012, IEEE transactions on pattern analysis and machine intelligence.

[11]  C. W. Gear,et al.  Multibody Grouping from Motion Images , 1998, International Journal of Computer Vision.

[12]  Hristo S. Sendov,et al.  Nonsmooth Analysis of Singular Values. Part I: Theory , 2005 .

[13]  Takeo Kanade,et al.  A Multibody Factorization Method for Independently Moving Objects , 1998, International Journal of Computer Vision.

[14]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..

[15]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[16]  David J. Kriegman,et al.  From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  David J. Kriegman,et al.  Clustering appearances of objects under varying illumination conditions , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[18]  Y. Weiss,et al.  Multibody factorization with uncertainty and missing data using the EM algorithm , 2004, CVPR 2004.

[19]  René Vidal,et al.  A Benchmark for the Comparison of 3-D Motion Segmentation Algorithms , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  Emmanuel J. Candès,et al.  The Power of Convex Relaxation: Near-Optimal Matrix Completion , 2009, IEEE Transactions on Information Theory.

[21]  René Vidal,et al.  Motion Segmentation in the Presence of Outlying, Incomplete, or Corrupted Trajectories , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Gilad Lerman,et al.  Median K-Flats for hybrid linear modeling with many outliers , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[23]  Shuicheng Yan,et al.  Latent Low-Rank Representation for subspace segmentation and feature extraction , 2011, 2011 International Conference on Computer Vision.

[24]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[25]  John Wright,et al.  Segmentation of Multivariate Mixed Data via Lossy Data Coding and Compression , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Nabil H. Mustafa,et al.  k-means projective clustering , 2004, PODS.

[27]  René Vidal,et al.  Sparse subspace clustering , 2009, CVPR.

[28]  Gilad Lerman,et al.  Hybrid Linear Modeling via Local Best-Fit Flats , 2010, International Journal of Computer Vision.

[29]  Emmanuel J. Candès,et al.  A Geometric Analysis of Subspace Clustering with Outliers , 2011, ArXiv.

[30]  Marc Pollefeys,et al.  A General Framework for Motion Segmentation: Independent, Articulated, Rigid, Non-rigid, Degenerate and Non-degenerate , 2006, ECCV.

[31]  René Vidal,et al.  Segmenting Motions of Different Types by Unsupervised Manifold Clustering , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[32]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[33]  René Vidal,et al.  Subspace Clustering , 2011, IEEE Signal Processing Magazine.

[34]  S. Shankar Sastry,et al.  Generalized principal component analysis (GPCA) , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[35]  Yong Yu,et al.  Robust Subspace Segmentation by Low-Rank Representation , 2010, ICML.

[36]  Ronen Basri,et al.  Lambertian Reflectance and Linear Subspaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  René Vidal,et al.  Clustering disjoint subspaces via sparse representation , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[38]  David J. Kriegman,et al.  Acquiring linear subspaces for face recognition under variable lighting , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  René Vidal,et al.  Low rank subspace clustering (LRSC) , 2014, Pattern Recognit. Lett..

[40]  Yong Yu,et al.  Robust Recovery of Subspace Structures by Low-Rank Representation , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.