Monte Carlo Techniques for Estimating the Fiedler Vector in Graph Applications

Determiningthe Fiedler vector of the Laplacian or adjacency matrices of graphs is the most computationally intensive component of several applications, such as graph partitioning, graph coloring, envelope reduction, and seriation. Often an approximation of the Fiedler vector is sufficient.We discuss issues involved in the use of Monte Carlo techniques for this purpose.

[1]  B. Eichinger Configuration Statistics of Gaussian Molecules , 1980 .

[2]  Ivan Tomov Dimov,et al.  Parallel computations of eigenvalues based on a Monte Carlo approach , 1998, Monte Carlo Methods Appl..

[3]  Cheng-Zhong Xu,et al.  Relaxed Implementation of Spectral Methods for Graph Partitioning , 1998, IRREGULAR.

[4]  J. Ilja Siepmann,et al.  Monte carlo methods in chemical physics , 1999 .

[5]  Aneta Karaivanova,et al.  A POWER METHOD WITH MONTE CARLO ITERATIONS , 1999 .

[6]  Michael Holzrichter,et al.  A Graph Based Davidson Algorithm for the Graph Partitioning Problem , 1999, Int. J. Found. Comput. Sci..

[7]  Andrew B. Kahng,et al.  New spectral methods for ratio cut partitioning and clustering , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[8]  A. George,et al.  An Analysis of Spectral Envelope Reduction via Quadratic Assignment Problems , 1997, SIAM J. Matrix Anal. Appl..

[9]  Alex Pothen,et al.  PARTITIONING SPARSE MATRICES WITH EIGENVECTORS OF GRAPHS* , 1990 .

[10]  Michael T. Heath,et al.  Scientific Computing: An Introductory Survey , 1996 .

[11]  Bruce Hendrickson,et al.  A Spectral Algorithm for Seriation and the Consecutive Ones Problem , 1999, SIAM J. Comput..

[12]  Bruce Hendrickson,et al.  The Chaco user`s guide. Version 1.0 , 1993 .

[13]  C. J. Umrigar,et al.  Monte Carlo Eigenvalue Methods in Quantum Mechanics and Statistical Mechanics , 1998, cond-mat/9804288.

[14]  Alejandro L. Garcia,et al.  Scientific Computing, An Introductory Survey , 1998 .

[15]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[16]  W. Wasow A note on the inversion of matrices by random walks , 1952 .

[17]  Horst D. Simon,et al.  Fast multilevel implementation of recursive spectral bisection for partitioning unstructured problems , 1994, Concurr. Pract. Exp..

[18]  David S. Greenberg,et al.  Physical Mapping by STS Hybridization: Algorithmic Strategies and the Challenge of Software Evaluation , 1995, J. Comput. Biol..

[19]  J. Gilbert,et al.  Graph Coloring Using Eigenvalue Decomposition , 1983 .

[20]  H. D. Simon,et al.  A spectral algorithm for envelope reduction of sparse matrices , 1993, Supercomputing '93. Proceedings.

[21]  C. Umrigar,et al.  Quantum Monte Carlo methods in physics and chemistry , 1999 .