Magnetism, iron minerals, and life on Mars.

A short critical review is provided on two questions linking magnetism and possible early life on Mars: (1) Did Mars have an Earth-like internal magnetic field, and, if so, during which period and was it a requisite for life? (2) Is there a connection between iron minerals in the martian regolith and life? We also discuss the possible astrobiological implications of magnetic measurements at the surface of Mars using two proposed instruments. A magnetic remanence device based on magnetic field measurements can be used to identify Noachian age rocks and lightning impacts. A contact magnetic susceptibility probe can be used to investigate weathering rinds on martian rocks and identify meteorites among the small regolith rocks. Both materials are considered possible specific niches for microorganisms and, thus, potential astrobiological targets. Experimental results on analogues are presented to support the suitability of such in situ measurements.

[1]  D. Kent An estimate of the duration of the faunal change at the Cretaceous-Tertiary boundary , 1977 .

[2]  S. Cisowski,et al.  The effect of shock on the magnetism of terrestrial rocks , 1978 .

[3]  R. Arvidson,et al.  Viking magnetic properties experiment - Extended mission results , 1979 .

[4]  R. Burns Does feroxyhyte occur on the surface of Mars? , 1980, Nature.

[5]  S. P. Miller,et al.  Investigation of a Vine‐Matthews Magnetic Lineation from a submersible: The source and character of marine magnetic anomalies , 1983 .

[6]  S. Cisowski Magnetic studies on Shergotty and other SNC meteorites , 1986 .

[7]  M. Uman,et al.  The Lightning Discharge , 1987 .

[8]  G. Flynn,et al.  An assessment of the meteoritic contribution to the Martian soil , 1990 .

[9]  J. M. Knudsen,et al.  Titanomaghemite in magnetic soils on Earth and Mars , 1990 .

[10]  C. Allen,et al.  Weathering of basaltic rocks under cold, arid conditions - Antarctica and Mars , 1991 .

[11]  M. Perrin,et al.  Intensity of the Earth's magnetic field since Precambrian from Thellier-type palaeointensity data and inferences on the thermal history of the core , 1992 .

[12]  F. Widdel,et al.  Ferrous iron oxidation by anoxygenic phototrophic bacteria , 1993, Nature.

[13]  L. Kristjánsson Investigations on geomagnetic reversals in Icelandic lavas, 1953?78 , 1993 .

[14]  A. Banin,et al.  The nanophase iron mineral(s) in Mars soil. , 1993, Journal of geophysical research.

[15]  J. Poirier,et al.  On the cooling of the Earth's core. , 1994 .

[16]  R. Zare,et al.  Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001 , 1996, Science.

[17]  M. Menvielle,et al.  Contribution of surface magnetic recordings to planetary exploration , 1996 .

[18]  J. M. Knudsen,et al.  The magnetic properties experiments on Mars Pathfinder , 1996 .

[19]  Richard V. Morris,et al.  Mineralogical analysis of Martian soil and rock by a miniaturized backscattering Mössbauer spectrometer , 1996 .

[20]  J. Kirschvink Magnetoreception: Homing in on vertebrates , 1997, Nature.

[21]  B. Jakosky,et al.  Impact of a paleomagnetic field on sputtering loss of Martian atmospheric argon and neon , 1997 .

[22]  The Magnetic Properties Experiment on Mars Pathfinder , 1997 .

[23]  Joseph L. Kirschvink,et al.  Paleomagnetic Evidence of a Low-Temperature Origin of Carbonate in the Martian Meteorite ALH84001 , 1997, Science.

[24]  D. Collinson Magnetic properties of Martian meteorites: Implications for an ancient Martian magnetic field , 1997 .

[25]  Y. Enomoto,et al.  Possible evidences of earthquake lightning accompanying the 1995 Kobe Earthquake inferred from the Nojima Fault Gouge , 1998 .

[26]  H. V. Lauer,et al.  Lepidocrocite to maghemite to hematite: A pathway to magnetic and hematitic Martian soil , 1998 .

[27]  M. Carr Retention of an atmosphere on early Mars , 1999 .

[28]  Philip A. Bland,et al.  Meteorite Accumulations on Mars , 1999 .

[29]  Ness,et al.  Global distribution of crustal magnetization discovered by the mars global surveyor MAG/ER experiment , 1999, Science.

[30]  Fritz Primdahl,et al.  DESIGN NOTE: Digital fluxgate magnetometer for the Astrid-2 satellite , 1999 .

[31]  Masaru Kono,et al.  Effect of the inner core on the numerical solution of the magnetohydrodynamic dynamo , 1999 .

[32]  P. Wasilewski,et al.  Aspects of the validation of magnetic remanence in meteorites , 2000 .

[33]  Bacteria in the Tatahouine meteorite: nanometric-scale life in rocks. , 2000, Earth and planetary science letters.

[34]  Contribution of magnetic measurements onboard NetLander to Mars exploration , 2000 .

[35]  G. Rikken,et al.  Enantioselective magnetochiral photochemistry , 2000, Nature.

[36]  H. Frey,et al.  An altitude‐normalized magnetic map of Mars and its interpretation , 2000 .

[37]  G. Kletetschka,et al.  Mineralogy of the sources for magnetic anomalies on Mars , 2000 .

[38]  Peter Brauer,et al.  Fluxgate sensor for the vector magnetometer onboard the `Astrid-2' satellite , 2000 .

[39]  C. Russell,et al.  Geophysics: Timing of the Martian dynamo , 2000, Nature.

[40]  R. Astumian,et al.  Biological sensing of small field differences by magnetically sensitive chemical reactions , 2000, Nature.

[41]  J P Wikswo,et al.  A low temperature transfer of ALH84001 from Mars to Earth. , 2000, Science.

[42]  J. Kirschvink,et al.  Elongated prismatic magnetite crystals in ALH84001 carbonate globules: potential Martian magnetofossils. , 2000, Geochimica et cosmochimica acta.

[43]  F. Leblanc,et al.  Sputtering of the Martian atmosphere by solar wind pick-up ions , 2001 .

[44]  Richard V. Morris,et al.  Global mapping of Martian hematite mineral deposits: Remnants of water‐driven processes on early Mars , 2001 .

[45]  Joseph L. Kirschvink,et al.  Records of an ancient Martian magnetic field in ALH84001 , 2001 .

[46]  V. Sautter,et al.  Pyrrhotite and the remanent magnetization of SNC meteorites: a changing perspective on Martian magnetism , 2001 .

[47]  F. Guyot,et al.  Description of new shock‐induced phases in the Shergotty, Zagami, Nakhla and Chassigny meteorites , 2001 .

[48]  W. Farrell,et al.  Is there a Martian atmospheric electric circuit , 2001 .

[49]  Harry Y. McSween,et al.  The rocks of Mars, from far and near , 2002 .

[50]  R. C. Morris,et al.  Could bacteria have formed the Precambrian banded iron formations , 2002 .

[51]  P. Rochette,et al.  Estimating peak currents at ground lightning impacts using remanent magnetization , 2002 .

[52]  A. Gorbushina,et al.  Rock surfaces as life indicators: new ways to demonstrate life and traces of former life. , 2002, Astrobiology.

[53]  M. R. Baer,et al.  Modeling heterogeneous energetic materials at the mesoscale , 2002 .

[54]  A. Brearley Magnetite in ALH 84001: An origin by shock‐induced thermal decomposition of iron carbonate , 2003 .

[55]  L. Hood,et al.  High pressure magnetic transition in pyrrhotite and impact demagnetization on Mars , 2003 .

[56]  D. Burt,et al.  Electrically conducting, Ca‐rich brines, rather than water, expected in the Martian subsurface , 2003 .

[57]  E. Pierazzo,et al.  Distribution of crustal magnetic fields on Mars: Shock effects of basin‐forming impacts , 2003 .

[58]  D. J. Barber,et al.  Transmission electron microscopy of minerals in the martian meteorite Allan Hills 84001 , 2003 .

[59]  A. Treiman,et al.  Submicron magnetite grains and carbon compounds in Martian meteorite ALH84001: inorganic, abiotic formation by shock and thermal metamorphism. , 2003, Astrobiology.

[60]  Tomas Kohout,et al.  Magnetic classification of stony meteorites: 1. Ordinary chondrites , 2003 .

[61]  L. Hood,et al.  Impact demagnetization by phase transition on Mars , 2003 .

[62]  R. Frankel,et al.  Magnetotactic bacteria on Earth and on Mars. , 2003, Astrobiology.

[63]  Ignasi Ribas,et al.  Loss of water from Mars: Implications for the oxidation of the soil , 2003 .

[64]  E. Scott,et al.  Paleomagnetic record of Martian meteorite ALH84001 , 2003 .

[65]  J. Kirschvink,et al.  Mars, Panspermia, and Origin of Life , 2003 .

[66]  M. Roos-Serote,et al.  Electrical discharges and broadband radio emission by Martian dust devils and dust storms , 2003 .

[67]  H. V. Lauer,et al.  Evidence for exclusively inorganic formation of magnetite in Martian meteorite ALH84001 , 2004 .

[68]  Pierre Rochette,et al.  Toward a robust normalized magnetic paleointensity method applied to meteorites , 2004 .

[69]  R. Rieder,et al.  Chemistry of Rocks and Soils in Gusev Crater from the Alpha Particle X-ray Spectrometer , 2004, Science.

[70]  L. Selbmann,et al.  Antarctic microfungi as models for exobiology , 2004 .

[71]  P. Rochette,et al.  Calibration of in situ magnetic susceptibility measurements , 2004 .

[72]  D. Ming,et al.  Mineralogy at Gusev Crater from the Mössbauer Spectrometer on the Spirit Rover , 2004, Science.

[73]  V. Chevrier,et al.  Weathering of iron-rich phases in simulated Martian atmospheres , 2004 .

[74]  J. Arkani‐Hamed,et al.  Impact demagnetization of the martian crust , 2004 .

[75]  Martin Stratmann,et al.  Iron corrosion by novel anaerobic microorganisms , 2004, Nature.

[76]  Mohan Sankaran,et al.  Magnetic tests for magnetosome chains in Martian meteorite ALH84001. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[77]  D. Newman,et al.  Formation of Fe(III)-minerals by Fe(II)-oxidizing photoautotrophic bacteria , 2004 .

[78]  L. Hood,et al.  Reply [to “Comment on ‘Impact demagnetization by phase transition on Mars’” by P. Surdas Mohit] , 2004 .

[79]  Jacques Laskar,et al.  Long term evolution and chaotic diffusion of the insolation quantities of Mars , 2004 .

[80]  G. De Luca,et al.  Experimental Colonization and Alteration of Orthopyroxene by the Pleomorphic Bacteria Ramlibacter tataouinensis , 2004 .

[81]  J. Arkani‐Hamed Timing of the Martian core dynamo , 2004 .

[82]  S. Soloviev Generation of electric and magnetic field during detonation of high explosive charges in boreholes , 2004 .

[83]  Pierre Rochette,et al.  Interest and design of magnetic properties measurements on planetary and asteroidal landers , 2004 .

[84]  M. Funaki,et al.  Matching Martian crustal magnetization and magnetic properties of Martian meteorites , 2005 .

[85]  L. Hood,et al.  Modeling of major martian magnetic anomalies: Further evidence for polar reorientations during the Noachian , 2005 .

[86]  R. Amils,et al.  Iron meteorites can support the growth of acidophilic chemolithoautotrophic microorganisms. , 2005, Astrobiology.

[87]  Geoffrey Jones,et al.  Lightning‐induced magnetic anomalies on archaeological sites , 2005 .

[88]  B. Weiss,et al.  Martian Surface Paleotemperatures from Thermochronology of Meteorites , 2005, Science.

[89]  R. J. Hart,et al.  Palaeomagnetism of the Vredefort meteorite crater and implications for craters on Mars , 2005, Nature.

[90]  F. Albarède,et al.  The age of SNC meteorites and the antiquity of the Martian surface , 2005 .

[91]  Jean-Pierre Bibring,et al.  Sulfates in Martian Layered Terrains: The OMEGA/Mars Express View , 2005, Science.

[92]  V. Sautter,et al.  Sulfide mineralogy and redox conditions in some shergottites , 2005 .

[93]  D. Dunlop,et al.  Magnetic minerals in the Martian crust , 2005 .

[94]  P. Rochette,et al.  In situ identification, pairing, and classification of meteorites from Antarctica through magnetic susceptibility measurements , 2006 .

[95]  P. Rochette Crustal magnetization of Mars controlled by lithology or cooling rate in a reversing dynamo? , 2006 .

[96]  H. P. Gunnlaugsson,et al.  Magnetic study of an Antarctic weathering profile on basalt: Implications for recent weathering on Mars , 2006 .