The stability test for symmetric alpha-stable distributions
暂无分享,去创建一个
Abdelhak M. Zoubir | D. R. Iskander | D. Robert Iskander | Ramon F. Brcich | R. F. Brcich | A. Zoubir | R. Brcich
[1] Abdelhak M. Zoubir,et al. Testing gaussianity with the characteristic function: The i.i.d. case , 1996, Signal Process..
[2] P. Hall,et al. The Effect of Simulation Order on Level Accuracy and Power of Monte Carlo Tests , 1989 .
[3] H. Keselman,et al. Multiple Comparison Procedures , 2005 .
[4] J. How,et al. No evidence of stable distributions in radar clutter , 1997, Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics.
[5] S. James Press,et al. Estimation in Univariate and Multivariate Stable Distributions , 1972 .
[6] Abdelhak M. Zoubir,et al. Testing for Impulsive Behavior: A Bootstrap Approach , 2001, Digit. Signal Process..
[7] B. Mandelbrot. The Variation of Some Other Speculative Prices , 1967 .
[8] Ing Rj Ser. Approximation Theorems of Mathematical Statistics , 1980 .
[9] Boualem Boashash,et al. The bootstrap and its application in signal processing , 1998, IEEE Signal Process. Mag..
[10] S. Csőrgő. Limit Behaviour of the Empirical Characteristic Function , 1981 .
[11] David Middleton,et al. Non-Gaussian Noise Models in Signal Processing for Telecommunications: New Methods and Results for Class A and Class B Noise Models , 1999, IEEE Trans. Inf. Theory.
[12] E. Fama. The Behavior of Stock-Market Prices , 1965 .
[13] O. Barndorff-Nielsen,et al. Lévy processes : theory and applications , 2001 .
[14] J. Nolan,et al. Multivariate stable distributions: approximation, estimation, simulation and identification , 1998 .
[15] E. Fama,et al. Parameter Estimates for Symmetric Stable Distributions , 1971 .
[16] Dimitrios Hatzinakos,et al. Analytic alpha-stable noise modeling in a Poisson field of interferers or scatterers , 1998, IEEE Trans. Signal Process..
[17] A. S. Paulson,et al. Modified weighted squared error estimation procedures with special emphasis on the stable laws , 1985 .
[18] Gutti Jogesh Babu. Bootstrap Techniques for Signal Processing , 2005, Technometrics.
[19] Ralph B. D'Agostino,et al. Goodness-of-Fit-Techniques , 2020 .
[20] A. Feuerverger,et al. The Empirical Characteristic Function and Its Applications , 1977 .
[21] M. Kenward,et al. An Introduction to the Bootstrap , 2007 .
[22] Rama Chellappa,et al. Adaptive target detection in foliage-penetrating SAR images using alpha-stable models , 1999, IEEE Trans. Image Process..
[23] 竹中 茂夫. G.Samorodnitsky,M.S.Taqqu:Stable non-Gaussian Random Processes--Stochastic Models with Infinite Variance , 1996 .
[24] Ioannis A. Koutrouvelis,et al. Regression-Type Estimation of the Parameters of Stable Laws , 1980 .
[25] T. W. Epps. Characteristic Functions and Their Empirical Counterparts: Geometrical Interpretations and Applications to Statistical Inference , 1993 .
[26] C. Mallows,et al. A Method for Simulating Stable Random Variables , 1976 .
[27] V. Zolotarev. One-dimensional stable distributions , 1986 .
[28] J. Nolan,et al. Fitting Data and Assessing Goodness � of � t with Stable Distributions , 1999 .
[29] John Teichmoeller. A Note on the Distribution of Stock Price Changes , 1971 .
[30] Ramon Brcic. Some aspects of signal processing in heavy tailed noise , 2002 .
[31] Athina P. Petropulu,et al. Power-Law Shot Noise and Its Relationship To Long-Memory �-Stable Processes , 2000 .
[32] Dimitris N. Politis,et al. Computer-intensive methods in statistical analysis , 1998, IEEE Signal Process. Mag..
[33] R. Officer. The Distribution of Stock Returns , 1972 .
[34] C. L. Nikias,et al. Signal processing with alpha-stable distributions and applications , 1995 .
[35] C. E. Heathcote. A TEST OF GOODNESS OF FIT FOR SYMMETRIC RANDOM VARIABLES1 , 1972 .
[36] David E. Booth,et al. Applied Multivariate Analysis , 2003, Technometrics.
[37] J. Huston McCulloch,et al. 13 Financial applications of stable distributions , 1996 .
[38] Chrysostomos L. Nikias,et al. Parameter estimation and blind channel identification in impulsive signal environments , 1995, IEEE Trans. Signal Process..
[39] John P. Nolan,et al. Tail Behavior, Modes and other Characteristics of Stable Distributions , 1999 .
[40] M. Taqqu,et al. Stable Non-Gaussian Random Processes : Stochastic Models with Infinite Variance , 1995 .
[41] A. Tamhane,et al. Multiple Comparison Procedures , 1989 .
[42] B. Stuck,et al. A statistical analysis of telephone noise , 1974 .
[43] R. Adler,et al. A practical guide to heavy tails: statistical techniques and applications , 1998 .
[44] Calyampudi Radhakrishna Rao,et al. Statistical methods in finance , 1996 .
[45] Clive W. J. Granger,et al. “Infinite Variance” and Research Strategy in Time Series Analysis , 1972 .
[46] D. Buckle. Bayesian Inference for Stable Distributions , 1995 .