Small RNAs establish gene expression thresholds.

[1]  G. Storz,et al.  Repression of small toxic protein synthesis by the Sib and OhsC small RNAs , 2008, Molecular microbiology.

[2]  Ilka M. Axmann,et al.  Small RNAs establish delays and temporal thresholds in gene expression. , 2008, Biophysical journal.

[3]  N. Wingreen,et al.  A quantitative comparison of sRNA-based and protein-based gene regulation , 2008, Molecular systems biology.

[4]  S. Marzi,et al.  RNA switches regulate initiation of translation in bacteria , 2008, Biological chemistry.

[5]  G. Friedlander,et al.  Regulation of gene expression by small non-coding RNAs: a quantitative view , 2007, Molecular systems biology.

[6]  T. Hwa,et al.  Quantitative Characteristics of Gene Regulation by Small RNA , 2007, PLoS Biology.

[7]  Jean-François Jacques,et al.  The small RNA RyhB activates the translation of shiA mRNA encoding a permease of shikimate, a compound involved in siderophore synthesis , 2007, Molecular microbiology.

[8]  J. Vogel,et al.  An antisense RNA inhibits translation by competing with standby ribosomes. , 2007, Molecular cell.

[9]  E. O’Shea,et al.  Living with noisy genes: how cells function reliably with inherent variability in gene expression. , 2007, Annual review of biophysics and biomolecular structure.

[10]  G. Storz,et al.  An antisense RNA controls synthesis of an SOS-induced toxin evolved from an antitoxin , 2007, Molecular microbiology.

[11]  H. Aiba Mechanism of RNA silencing by Hfq-binding small RNAs. , 2007, Current opinion in microbiology.

[12]  F. Repoila,et al.  Small noncoding RNAs controlling pathogenesis. , 2007, Current opinion in microbiology.

[13]  K. Sneppen,et al.  Efficient degradation and expression prioritization with small RNAs , 2006, Physical biology.

[14]  H. Aiba,et al.  Base‐pairing requirement for RNA silencing by a bacterial small RNA and acceleration of duplex formation by Hfq , 2006, Molecular microbiology.

[15]  X. Xie,et al.  Probing Gene Expression in Live Cells, One Protein Molecule at a Time , 2006, Science.

[16]  N. Friedman,et al.  Stochastic protein expression in individual cells at the single molecule level , 2006, Nature.

[17]  Hening Lin,et al.  How pathogenic bacteria evade mammalian sabotage in the battle for iron , 2006, Nature chemical biology.

[18]  Gisela Storz,et al.  20 Versatile Roles of Small RNA Regulators in Bacteria , 2006 .

[19]  N. Majdalani,et al.  Small RNA regulators and the bacterial response to stress. , 2006, Cold Spring Harbor symposia on quantitative biology.

[20]  E. Cox,et al.  Real-Time Kinetics of Gene Activity in Individual Bacteria , 2005, Cell.

[21]  S. Gottesman,et al.  Effect of RyhB Small RNA on Global Iron Use in Escherichia coli , 2005, Journal of bacteriology.

[22]  S. Gottesman,et al.  Involvement of a novel transcriptional activator and small RNA in post‐transcriptional regulation of the glucose phosphoenolpyruvate phosphotransferase system , 2004, Molecular microbiology.

[23]  M. Belfort,et al.  The Small Noncoding DsrA RNA Is an Acid Resistance Regulator in Escherichia coli , 2004, Journal of bacteriology.

[24]  S. Gottesman The small RNA regulators of Escherichia coli: roles and mechanisms*. , 2004, Annual review of microbiology.

[25]  N. Wingreen,et al.  The Small RNA Chaperone Hfq and Multiple Small RNAs Control Quorum Sensing in Vibrio harveyi and Vibrio cholerae , 2004, Cell.

[26]  Z. Nagy,et al.  Regulation of transposition in bacteria. , 2004, Research in microbiology.

[27]  D. Touati,et al.  Hfq, a new chaperoning role: binding to messenger RNA determines access for small RNA regulator , 2004, The EMBO journal.

[28]  J. Elf,et al.  Fast evaluation of fluctuations in biochemical networks with the linear noise approximation. , 2003, Genome research.

[29]  S. Gottesman,et al.  Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. , 2003, Genes & development.

[30]  Johan Paulsson,et al.  Near-critical phenomena in intracellular metabolite pools. , 2003, Biophysical journal.

[31]  U. Alon,et al.  Negative autoregulation speeds the response times of transcription networks. , 2002, Journal of molecular biology.

[32]  E. Kolker,et al.  Transcriptome analysis of Escherichia coli using high-density oligonucleotide probe arrays. , 2002, Nucleic acids research.

[33]  Ertugrul M. Ozbudak,et al.  Regulation of noise in the expression of a single gene , 2002, Nature Genetics.

[34]  S. Gottesman,et al.  A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[35]  E. Wagner,et al.  Antisense RNAs in bacteria and their genetic elements. , 2002, Advances in genetics.

[36]  S. Eddy,et al.  Computational identification of noncoding RNAs in E. coli by comparative genomics , 2001, Current Biology.

[37]  G. Storz,et al.  Identification of novel small RNAs using comparative genomics and microarrays. , 2001, Genes & development.

[38]  U. Alon,et al.  Ordering Genes in a Flagella Pathway by Analysis of Expression Kinetics from Living Bacteria , 2001, Science.

[39]  M. Ehrenberg,et al.  Noise in a minimal regulatory network: plasmid copy number control , 2001, Quarterly Reviews of Biophysics.

[40]  L. Argaman,et al.  fhlA repression by OxyS RNA: kissing complex formation at two sites results in a stable antisense-target RNA complex. , 2000, Journal of molecular biology.

[41]  E. Wagner,et al.  Antisense RNA regulation in prokaryotes: rapid RNA/RNA interaction facilitated by a general U-turn loop structure. , 1999, Journal of molecular biology.

[42]  A. Arkin,et al.  Stochastic mechanisms in gene expression. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[43]  A. Gultyaev,et al.  Antisense RNA-regulated programmed cell death. , 1997, Annual review of genetics.

[44]  E. Wagner,et al.  Bulged-out nucleotides in an antisense RNA are required for rapid target RNA binding in vitro and inhibition in vivo. , 1995, Nucleic acids research.

[45]  R. Simons,et al.  Antisense RNA control in bacteria, phages, and plasmids. , 1994, Annual review of microbiology.

[46]  H. Erickson,et al.  Kinetics of protein-protein association explained by Brownian dynamics computer simulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[47]  R. Simons,et al.  The unusual stability of the IS10 anti‐sense RNA is critical for its function and is determined by the structure of its stem‐domain. , 1989, The EMBO journal.

[48]  T. Mizuno,et al.  Function of micF as an antisense RNA in osmoregulatory expression of the ompF gene in Escherichia coli , 1987, Journal of bacteriology.

[49]  B. Ganem RNA world , 1987, Nature.

[50]  Nancy Kleckner,et al.  Translational control of IS10 transposition , 1983, Cell.

[51]  B. Sahagan,et al.  A small, unstable RNA molecule of Escherichia coli: spot 42 RNA. I. Nucleotide sequence analysis. , 1979, Journal of molecular biology.

[52]  G. Hammes,et al.  A kinetic study of protein-protein interactions. , 1976, Biochemistry.