From Euler and Navier-Stokes equations to shallow waters by asymptotic analysis

In this paper, we study the Navier-Stokes and Euler equations in a domain with small depth. With this aim, we introduce a small adimensional parameter @e related to the depth. First we make a change of variable to a domain independent of @e and then we use asymptotic analysis to study what happens when @e becomes small. This way we obtain two new models for @e small that, after coming back to the original domain and without making a priori assumptions about velocity or pressure behaviour, give us a shallow water model including a new diffusion term (obtained from Navier-Stokes equations) and a shallow water model without viscosity and explicit dependence on depth (obtained from Euler equations).

[1]  P. G. Ciarlet,et al.  Theory of plates , 1997 .

[2]  R. F. Warming,et al.  The modified equation approach to the stability and accuracy analysis of finite-difference methods , 1974 .

[3]  J. M. Viaño,et al.  Mathematical modelling of rods , 1996 .

[4]  Linda Sundbye Global Existence for the Cauchy Problem for the Viscous Shallow Water Equations , 1998 .

[5]  Reinaldo García,et al.  Numerical solution of the St. Venant equations with the MacCormack finite‐difference scheme , 1986 .

[6]  Francisco Guillén,et al.  Mathematical Justification of the Hydrostatic Approximation in the Primitive Equations of Geophysical Fluid Dynamics , 2001, SIAM J. Math. Anal..

[7]  M. Jovanović,et al.  Experimental verification of the MacCormack numerical scheme , 1995 .

[8]  Robert W. MacCormack,et al.  Numerical solution of the interaction of a shock wave with a laminar boundary layer , 1971 .

[9]  Robert S. Bernard,et al.  A MacCormack scheme for incompressible flow , 1992 .

[10]  Philippe G. Ciarlet,et al.  Theory of Shells , 2000 .

[11]  R. Zeytounian Modélisation asymptotique en mécanique des fluides newtoniens , 1994 .

[12]  Bernardi Christine,et al.  On the Shallow Water Equations at Low Reynolds Number , 1991 .

[13]  P. García-Navarro,et al.  McCormack's method for the numerical simulation of one-dimensional discontinuous unsteady open channel flow , 1992 .

[14]  P. Destuynder,et al.  Une théorie asymptotique des plaques minces en élasticité linéaire , 1986 .

[15]  Jean-Frédéric Gerbeau,et al.  Derivation of viscous Saint-Venant system for laminar shallow water , 2001 .

[16]  I W Dand,et al.  SHALLOW WATER HYDRODYNAMICS , 1971 .