Cell Stress in Cortical Organoids Impairs Molecular Subtype Specification

[1]  S. Pașca The hidden biology of the human brain , 2019, Nature Medicine.

[2]  Matthew G. Keefe,et al.  Development and Arealization of the Cerebral Cortex , 2019, Neuron.

[3]  Allan R. Jones,et al.  Conserved cell types with divergent features in human versus mouse cortex , 2019, Nature.

[4]  Sean K. Simmons,et al.  Individual brain organoids reproducibly form cell diversity of the human cerebral cortex , 2019, Nature.

[5]  Maximilian Haeussler,et al.  Single-cell genomics identifies cell type–specific molecular changes in autism , 2019, Science.

[6]  T. Palmer,et al.  Human 3D Cellular Model of Hypoxic Brain Injury of Prematurity , 2019, Nature Medicine.

[7]  Prabir Patra,et al.  hESC-Derived Thalamic Organoids Form Reciprocal Projections When Fused with Cortical Organoids. , 2019, Cell stem cell.

[8]  John R. Huguenard,et al.  Differentiation and Maturation of Oligodendrocytes in Human Three-Dimensional Neural Cultures , 2018, Nature Neuroscience.

[9]  Ian T. Fiddes,et al.  Establishing Cerebral Organoids as Models of Human-Specific Brain Evolution , 2018, Cell.

[10]  A. Regev,et al.  Molecular Classification and Comparative Taxonomics of Foveal and Peripheral Cells in Primate Retina , 2018, Cell.

[11]  M. Gerstein,et al.  Transcriptome and epigenome landscape of human cortical development modeled in organoids , 2018, Science.

[12]  Samantha A. Morris,et al.  Comparative Analysis and Refinement of Human PSC-Derived Kidney Organoid Differentiation with Single-Cell Transcriptomics. , 2018, Cell stem cell.

[13]  Alessandro Simi,et al.  Developmental genetic programs and activity-dependent mechanisms instruct neocortical area mapping , 2018, Current Opinion in Neurobiology.

[14]  Allan R. Jones,et al.  Shared and distinct transcriptomic cell types across neocortical areas , 2018, Nature.

[15]  W. Huttner,et al.  A novel population of Hopx-dependent basal radial glial cells in the developing mouse neocortex , 2018, Development.

[16]  Evan Z. Macosko,et al.  Molecular Diversity and Specializations among the Cells of the Adult Mouse Brain , 2018, Cell.

[17]  Laura Masullo,et al.  Cerebral organoids at the air-liquid interface generate diverse nerve tracts with functional output , 2018, Nature Neuroscience.

[18]  Hao Li,et al.  An in vivo model of functional and vascularized human brain organoids , 2018, Nature Biotechnology.

[19]  Lars E. Borm,et al.  Molecular Architecture of the Mouse Nervous System , 2018, Cell.

[20]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[21]  Christoph Hafemeister,et al.  Developmental diversification of cortical inhibitory interneurons , 2017, Nature.

[22]  Alex A. Pollen,et al.  Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex , 2017, Science.

[23]  G. Govindaiah,et al.  Fusion of Regionally Specified hPSC-Derived Organoids Models Human Brain Development and Interneuron Migration. , 2017, Cell stem cell.

[24]  M. Saarma,et al.  MANF Is Essential for Neurite Extension and Neuronal Migration in the Developing Cortex , 2017, eNeuro.

[25]  Spyros Darmanis,et al.  Human Astrocyte Maturation Captured in 3D Cerebral Cortical Spheroids Derived from Pluripotent Stem Cells , 2017, Neuron.

[26]  H. Binder,et al.  Multilineage communication regulates human liver bud development from pluripotency , 2017, Nature.

[27]  Daniel R. Berger,et al.  Cell diversity and network dynamics in photosensitive human brain organoids , 2017, Nature.

[28]  Genevieve Konopka,et al.  MEF2C regulates cortical inhibitory and excitatory synapses and behaviors relevant to neurodevelopmental disorders , 2016, eLife.

[29]  Tomasz J. Nowakowski,et al.  Transformation of the Radial Glia Scaffold Demarcates Two Stages of Human Cerebral Cortex Development , 2016, Neuron.

[30]  K. Shirahige,et al.  ARCN1 Mutations Cause a Recognizable Craniofacial Syndrome Due to COPI-Mediated Transport Defects. , 2016, American journal of human genetics.

[31]  Evan Z. Macosko,et al.  Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics , 2016, Cell.

[32]  Min Goo Lee,et al.  Monomerization and ER Relocalization of GRASP Is a Requisite for Unconventional Secretion of CFTR , 2016, Traffic.

[33]  E. Schadt,et al.  variancePartition: interpreting drivers of variation in complex gene expression studies , 2016, bioRxiv.

[34]  Sebastian A. Leidel,et al.  A Dynamic Unfolded Protein Response Contributes to the Control of Cortical Neurogenesis. , 2015, Developmental cell.

[35]  Madeline A. Lancaster,et al.  Human cerebral organoids recapitulate gene expression programs of fetal neocortex development , 2015, Proceedings of the National Academy of Sciences.

[36]  Alex A. Pollen,et al.  Molecular Identity of Human Outer Radial Glia during Cortical Development , 2015, Cell.

[37]  Keisuke Ito,et al.  Metabolic requirements for the maintenance of self-renewing stem cells , 2014, Nature Reviews Molecular Cell Biology.

[38]  M. Eiraku,et al.  Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell–derived neocortex , 2013, Proceedings of the National Academy of Sciences.

[39]  Madeline A. Lancaster,et al.  Cerebral organoids model human brain development and microcephaly , 2013, Nature.

[40]  Min Goo Lee,et al.  Rescue of ΔF508-CFTR Trafficking via a GRASP-Dependent Unconventional Secretion Pathway , 2011, Cell.

[41]  A. Kriegstein,et al.  Development and Evolution of the Human Neocortex , 2011, Cell.

[42]  Steve Horvath,et al.  WGCNA: an R package for weighted correlation network analysis , 2008, BMC Bioinformatics.

[43]  Yoshiki Sasai,et al.  Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. , 2008, Cell stem cell.

[44]  Mi-Sung Kim,et al.  MEF2C, a transcription factor that facilitates learning and memory by negative regulation of synapse numbers and function , 2008, Proceedings of the National Academy of Sciences.

[45]  M. Götz,et al.  Developmental cell biology: The cell biology of neurogenesis , 2005, Nature Reviews Molecular Cell Biology.

[46]  A. Yoshida,et al.  Phosphoglycerate kinase abnormalities: functional, structural and genomic aspects. , 1983, Biomedica biochimica acta.