Revised Genome Sequence of Burkholderia thailandensis MSMB43 with Improved Annotation

ABSTRACT There is growing interest in discovery of novel bioactive natural products from Burkholderia thailandensis. Here we report a significantly improved genome sequence and reannotation of Burkholderia thailandensis MSMB43, which will facilitate the discovery of new natural products through genome mining and studies of the metabolic versatility of this bacterium.

[1]  Yi-Qiang Cheng,et al.  Characterization of a Gene Cluster Responsible for the Biosynthesis of Anticancer Agent FK228 in Chromobacterium violaceum No. 968 , 2007, Applied and Environmental Microbiology.

[2]  Avram Levy,et al.  High-Redundancy Draft Sequencing of 15 Clinical and Environmental Burkholderia Strains , 2010, Journal of bacteriology.

[3]  H. Jenke-Kodama,et al.  Sources of Diversity in Bactobolin Biosynthesis by Burkholderia thailandensis E264 , 2011, Organic letters.

[4]  Yi-Qiang Cheng,et al.  Discovery and activity profiling of thailandepsins A through F, potent histone deacetylase inhibitors, from Burkholderia thailandensis E264. , 2012, MedChemComm.

[5]  Donald E Woods,et al.  Burkholderia thailandensis harbors two identical rhl gene clusters responsible for the biosynthesis of rhamnolipids , 2009, BMC Microbiology.

[6]  S. Brady,et al.  Acyldepsipeptide HDAC inhibitor production induced in Burkholderia thailandensis. , 2011, Organic letters.

[7]  Franz-Josef Meyer-Almes,et al.  Thailandepsins: Bacterial Products with Potent Histone Deacetylase Inhibitory Activities and Broad-spectrum Antiproliferative Activities , 2022 .

[8]  Ryan T Novak,et al.  Recovery of a Burkholderia thailandensis-like isolate from an Australian water source , 2008, BMC Microbiology.

[9]  H. Jenke-Kodama,et al.  Exploiting the mosaic structure of trans-acyltransferase polyketide synthases for natural product discovery and pathway dissection , 2008, Nature Biotechnology.

[10]  Kai Blin,et al.  antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences , 2011, Nucleic Acids Res..

[11]  Karina M. Zuck,et al.  Histone deacetylase inhibitors from Burkholderia thailandensis. , 2011, Journal of natural products.

[12]  E. Greenberg,et al.  Quorum-Sensing Control of Antibiotic Synthesis in Burkholderia thailandensis , 2009, Journal of bacteriology.

[13]  E. Dittmann,et al.  Microcyclamide Biosynthesis in Two Strains of Microcystis aeruginosa: from Structure to Genes and Vice Versa , 2008, Applied and Environmental Microbiology.

[14]  W. Nierman,et al.  Bacterial genome adaptation to niches: Divergence of the potential virulence genes in three Burkholderia species of different survival strategies , 2005, BMC Genomics.

[15]  F. Lépine,et al.  Burkholderia pseudomallei, B. thailandensis, and B. ambifaria Produce 4-Hydroxy-2-Alkylquinoline Analogues with a Methyl Group at the 3 Position That Is Required for Quorum-Sensing Regulation , 2008, Journal of bacteriology.

[16]  Yi-Qiang Cheng,et al.  New Insights into the Genetic Organization of the FK228 Biosynthetic Gene Cluster in Chromobacterium violaceum No. 968 , 2010, Applied and Environmental Microbiology.

[17]  M. Marahiel,et al.  Isolation and structural characterization of capistruin, a lasso peptide predicted from the genome sequence of Burkholderia thailandensis E264. , 2008, Journal of the American Chemical Society.

[18]  L. Rahme,et al.  PqsA is required for the biosynthesis of 2,4-dihydroxyquinoline (DHQ), a newly identified metabolite produced by Pseudomonas aeruginosa and Burkholderia thailandensis , 2007, Biological chemistry.