CD28/B7 regulation of autoimmune diabetes

[1]  J. Bluestone,et al.  CD28/B7 costimulation regulates autoimmune diabetes induced with multiple low doses of streptozotocin. , 1997, Journal of immunology.

[2]  E. Fuchs,et al.  CD28/B7 regulation of Th1 and Th2 subsets in the development of autoimmune diabetes. , 1996, Immunity.

[3]  Nitin J. Karandikar,et al.  CTLA-4: a negative regulator of autoimmune disease , 1996, The Journal of experimental medicine.

[4]  T. Mak,et al.  Duration of TCR stimulation determines costimulatory requirement of T cells. , 1996, Immunity.

[5]  J. Allison,et al.  CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells , 1996, The Journal of experimental medicine.

[6]  J. Bluestone,et al.  CTLA-4 ligation blocks CD28-dependent T cell activation [published erratum appears in J Exp Med 1996 Jul 1;184(1):301] , 1996, The Journal of experimental medicine.

[7]  J. Bluestone,et al.  CD28/B7 system of T cell costimulation. , 1996, Annual review of immunology.

[8]  K. Herold,et al.  Regulation of cytokine production during development of autoimmune diabetes induced with multiple low doses of streptozotocin. , 1996, Journal of immunology.

[9]  J. Allison,et al.  Enhancement of Antitumor Immunity by CTLA-4 Blockade , 1996, Science.

[10]  J. Peterson,et al.  Transfer of Diabetes in the NOD-scid Mouse by CD4 T-Cell Clones: Differential Requirement for CD8 T-Cells , 1996, Diabetes.

[11]  T. Mak,et al.  Skin allograft rejection in CD28-deficient mice. , 1996, Transplantation.

[12]  D. Hafler,et al.  Expression of costimulatory molecules B7-1 (CD80), B7-2 (CD86), and interleukin 12 cytokine in multiple sclerosis lesions , 1995, The Journal of experimental medicine.

[13]  Nitin J. Karandikar,et al.  Blockade of CD28/B7-1 interaction prevents epitope spreading and clinical relapses of murine EAE. , 1995, Immunity.

[14]  H. Griesser,et al.  Lymphoproliferative Disorders with Early Lethality in Mice Deficient in Ctla-4 , 1995, Science.

[15]  M. Feldmann,et al.  Critical role of CD28/B7 costimulation in the development of human Th2 cytokine-producing cells. , 1995, Blood.

[16]  J. Bluestone,et al.  Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. , 1995, Immunity.

[17]  K. Herold,et al.  Intrathymic Transplantation of Islet Antigen Affects CD8+ Diabetogenic T-Cells Resulting in Tolerance to Autoimmune IDDM , 1995, Diabetes.

[18]  D. Harlan,et al.  Very-Low-Dose Streptozotocin Induces Diabetes in Insulin Promoter-mB7-1 Transgenic Mice , 1995, Diabetes.

[19]  J. Bluestone New perspectives of C1328-137-mediated T cell costimulation , 1995 .

[20]  B. Levine,et al.  CD28 ligands CD80 (B7-1) and CD86 (B7-2) induce long-term autocrine growth of CD4+ T cells and induce similar patterns of cytokine secretion in vitro. , 1995, International immunology.

[21]  G. Freeman,et al.  Both CD28 ligands CD80 (B7-1) and CD86 (B7-2) activate phosphatidylinositol 3-kinase, and wortmannin reveals heterogeneity in the regulation of T cell IL-2 secretion. , 1995, International immunology.

[22]  C Benoist,et al.  T helper cell subsets in insulin-dependent diabetes. , 1995, Science.

[23]  J. Gribben,et al.  B7-1 and B7-2 do not deliver identical costimulatory signals, since B7-2 but not B7-1 preferentially costimulates the initial production of IL-4. , 1995, Immunity.

[24]  Laurie H Glimcher,et al.  B7-1 and B7-2 costimulatory molecules activate differentially the Th1/Th2 developmental pathways: Application to autoimmune disease therapy , 1995, Cell.

[25]  C. Janeway,et al.  Expression of the Co-stimulator Molecule B7–1 in Pancreatic β-Cells Accelerates Diabetes in the NOD Mouse , 1995, Diabetes.

[26]  J. Bluestone,et al.  Differential effects of anti-B7-1 and anti-B7-2 monoclonal antibody treatment on the development of diabetes in the nonobese diabetic mouse , 1995, The Journal of experimental medicine.

[27]  M. Atkinson,et al.  The pathogenesis of insulin-dependent diabetes mellitus. , 1994, The New England journal of medicine.

[28]  A. Montag,et al.  Prevention of autoimmune diabetes by treatment with anti-LFA-1 and anti-ICAM-1 monoclonal antibodies. , 1994, Cellular immunology.

[29]  J. Bluestone,et al.  Absence of B7-dependent responses in CD28-deficient mice. , 1994, Immunity.

[30]  M. Jenkins The ups and downs of T cell costimulation. , 1994, Immunity.

[31]  A. Montag,et al.  INHIBITION OF TRANSPLANT REJECTION BY PRETREATMENT OF XENOGENEIC PANCREATIC ISLET CELLS WITH ANTI‐ICAM-1 ANTIBODIES , 1994, Transplantation.

[32]  R. Tisch,et al.  Effect of tumor necrosis factor alpha on insulin-dependent diabetes mellitus in NOD mice. I. The early development of autoimmunity and the diabetogenic process , 1994, The Journal of experimental medicine.

[33]  P. Linsley,et al.  Comparative analysis of B7-1 and B7-2 costimulatory ligands: expression and function , 1994, The Journal of experimental medicine.

[34]  P. Linsley,et al.  CTLA-4 can function as a negative regulator of T cell activation. , 1994, Immunity.

[35]  K. Amano,et al.  Prevention of autoimmune insulin-dependent diabetes in non-obese diabetic mice by anti-LFA-1 and anti-ICAM-1 mAb. , 1994, International immunology.

[36]  A. Abbas,et al.  Costimulator dependence of lymphokine secretion by naive and activated CD4+ T lymphocytes from TCR transgenic mice. , 1994, Journal of immunology.

[37]  M. Monahan,et al.  Recombinant human IL-10 prevents the onset of diabetes in the nonobese diabetic mouse. , 1994, Clinical immunology and immunopathology.

[38]  R. Flavell,et al.  The role of the T cell costimulator B7-1 in autoimmunity and the induction and maintenance of tolerance to peripheral antigen. , 1994, Immunity.

[39]  D. Harlan,et al.  Mice expressing both B7-1 and viral glycoprotein on pancreatic beta cells along with glycoprotein-specific transgenic T cells develop diabetes due to a breakdown of T-lymphocyte unresponsiveness. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[40]  C. Janeway,et al.  The pathogenesis of adoptive murine autoimmune diabetes requires an interaction between alpha 4-integrins and vascular cell adhesion molecule-1. , 1994, The Journal of clinical investigation.

[41]  N. Sarvetnick,et al.  Production of interleukin 10 by islet cells accelerates immune-mediated destruction of beta cells in nonobese diabetic mice , 1994, The Journal of experimental medicine.

[42]  P. Linsley,et al.  CD28-mediated costimulation of interleukin 2 (IL-2) production plays a critical role in T cell priming for IL-4 and interferon gamma production , 1994, The Journal of experimental medicine.

[43]  J. Bluestone,et al.  Expression and functional significance of an additional ligand for CTLA-4. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[44]  J. Gribben,et al.  Murine B7-2, an alternative CTLA4 counter-receptor that costimulates T cell proliferation and interleukin 2 production , 1993, The Journal of experimental medicine.

[45]  J. Gribben,et al.  Cloning of B7-2: a CTLA-4 counter-receptor that costimulates human T cell proliferation. , 1993, Science.

[46]  P. Linsley,et al.  Identification of an alternative CTLA-4 ligand costimulatory for T cell activation. , 1993, Science.

[47]  L. Lanier,et al.  B70 antigen is a second ligand for CTLA-4 and CD28 , 1993, Nature.

[48]  A. Tobin,et al.  Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes , 1993, Nature.

[49]  R. Tisch,et al.  Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice , 1993, Nature.

[50]  P. Linsley,et al.  Long-term acceptance of major histocompatibility complex mismatched cardiac allografts induced by CTLA4Ig plus donor-specific transfusion , 1993, The Journal of experimental medicine.

[51]  K P Lee,et al.  Differential T cell costimulatory requirements in CD28-deficient mice. , 1993, Science.

[52]  K. Lafferty,et al.  The maintenance of self‐tolerance , 1993, Immunology and cell biology.

[53]  K. Lafferty,et al.  Altered cytokine activity in adjuvant inhibition of autoimmune diabetes. , 1993, Journal of autoimmunity.

[54]  L. Aarden,et al.  Development of human Th1 and Th2 cytokine responses: The cytokine production profile of T cells is dictated by the primary in vitro stimulus , 1993, European journal of immunology.

[55]  A. Montag,et al.  Induction of tolerance to autoimmune diabetes with islet antigens , 1992, The Journal of experimental medicine.

[56]  P. Linsley,et al.  Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4lg. , 1992, Science.

[57]  J. Allison,et al.  CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones , 1992, Nature.

[58]  P. Linsley,et al.  CTLA-4 is a second receptor for the B cell activation antigen B7 , 1991, The Journal of experimental medicine.

[59]  P. Lacy,et al.  Low-Dose Streptozocin-Induced Autoimmune Diabetes in Islet Transplantation Model , 1991, Diabetes.

[60]  H. Pircher,et al.  Ablation of “tolerance” and induction of diabetes by virus infection in viral antigen transgenic mice , 1991, Cell.

[61]  P. Linsley,et al.  Binding of the B cell activation antigen B7 to CD28 costimulates T cell proliferation and interleukin 2 mRNA accumulation , 1991, The Journal of experimental medicine.

[62]  K. Haskins,et al.  Acceleration of diabetes in young NOD mice with a CD4+ islet-specific T cell clone. , 1990, Science.

[63]  J. Miller,et al.  Tissue-specific expression of allogeneic class II MHC molecules induces neither tissue rejection nor clonal inactivation of alloreactive T cells. , 1990, Journal of immunology.

[64]  P. Halloran,et al.  Multiple low dose streptozotocin induces systemic MHC expression in mice by triggering T cells to release IFN-gamma. , 1989, Journal of immunology.

[65]  C. Fathman,et al.  Immunotherapy of the nonobese diabetic mouse: treatment with an antibody to T-helper lymphocytes. , 1988, Science.

[66]  L. Wicker,et al.  Both the Lyt-2+ and L3T4+ T cell subsets are required for the transfer of diabetes in nonobese diabetic mice. , 1988, Journal of immunology.

[67]  A. Montag,et al.  Treatment With Anti-T-Lymphocyte Antibodies Prevents Induction of Insulitis in Mice Given Multiple Doses of Streptozocin , 1987, Diabetes.

[68]  G. Eisenbarth Type I diabetes mellitus. A chronic autoimmune disease. , 1986 .

[69]  T. Yokochi,et al.  B lymphoblast antigen (BB-1) expressed on Epstein-Barr virus-activated B cell blasts, B lymphoblastoid cell lines, and Burkitt's lymphomas. , 1982, Journal of immunology.

[70]  A. Rossini,et al.  Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus. , 1976, Science.

[71]  P. Linsley,et al.  The role of the CD28 receptor during T cell responses to antigen. , 1993, Annual review of immunology.

[72]  G. Eisenbarth,et al.  Type-I diabetes: a chronic autoimmune disease of human, mouse, and rat. , 1990, Annual review of immunology.

[73]  P. Linsley,et al.  Role of the CD28 receptor in T-cell activation. , 1990, Immunology today.

[74]  R. Schwartz,et al.  Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. , 1989, Annual review of immunology.

[75]  J. Mordes,et al.  Immunology of insulin-dependent diabetes mellitus. , 1985, Annual review of immunology.