Comparison of an optimal regression method for climate reconstruction with the compare_methods() function from the dendroTools R package

[1]  J. Jaagus,et al.  Reconstruction of precipitation variability in Estonia since the eighteenth century, inferred from oak and spruce tree rings , 2018, Climate Dynamics.

[2]  T. Levanič,et al.  dendroTools: R package for studying linear and nonlinear responses between tree-rings and daily environmental data , 2018 .

[3]  S. Hanini,et al.  Application of multilayer perceptron for prediction of the rat acute toxicity of insecticides , 2017 .

[4]  Muhammad Faisal,et al.  Forecasting Drought Using Multilayer Perceptron Artificial Neural Network Model , 2017, ArXiv.

[5]  Annette Menzel,et al.  Testing the stability of transfer functions , 2017 .

[6]  R. Kjelgren,et al.  Statistical treatment for the wet bias in tree-ring chronologies: a case study from the Interior West, USA , 2017, Environmental and Ecological Statistics.

[7]  Tom Levanič,et al.  Should artificial neural networks replace linear models in tree ring based climate reconstructions , 2016 .

[8]  T. Levanič,et al.  Early summer temperatures reconstructed from black pine (Pinus nigra Arnold) tree-ring widths from Albania , 2015 .

[9]  M. Wilmking,et al.  An Ensemble Weighting Approach for Dendroclimatology: Drought Reconstructions for the Northeastern Tibetan Plateau , 2014, PloS one.

[10]  P Pérez-Rodríguez,et al.  Technical note: An R package for fitting Bayesian regularized neural networks with applications in animal breeding. , 2013, Journal of animal science.

[11]  José Manuel Benítez,et al.  On the use of cross-validation for time series predictor evaluation , 2012, Inf. Sci..

[12]  P. Araujo,et al.  Multilayer perceptron neural network for flow prediction. , 2011, Journal of environmental monitoring : JEM.

[13]  Kurt Hornik,et al.  Open-source machine learning: R meets Weka , 2009, Comput. Stat..

[14]  Jari Holopainen,et al.  Dendroclimatic transfer functions revisited: Little Ice Age and Medieval Warm Period summer temperatures reconstructed using artificial neural networks and linear algorithms , 2009 .

[15]  Malcolm K. Hughes,et al.  A forward modeling approach to paleoclimatic interpretation of tree‐ring data , 2006 .

[16]  Gerald R. North,et al.  Surface Temperature Reconstructions for the Last 1000 Years , 2006 .

[17]  E. Cook,et al.  Alternative methods of proxy-based climate field reconstruction: application to summer drought over the conterminous United States back to AD 1700 from tree-ring data , 2004 .

[18]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[19]  T. Schneider Analysis of Incomplete Climate Data: Estimation of Mean Values and Covariance Matrices and Imputation of Missing Values. , 2001 .

[20]  R. Hebda,et al.  Modeling Tree-Ring Growth Responses to Climatic Variables Using Artificial Neural Networks , 2000, Forest Science.

[21]  Roberto Revelli,et al.  On the use of neural networks for dendroclimatic reconstructions , 2000 .

[22]  H. K. D. H. Bhadeshia,et al.  Neural Networks in Materials Science , 1999 .

[23]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[24]  C. Woodhouse Artificial neural networks and dendroclimatic reconstructions: an example from the Front Range, Colorado, USA , 1999 .

[25]  M. W Gardner,et al.  Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences , 1998 .

[26]  Martin T. Hagan,et al.  Gauss-Newton approximation to Bayesian learning , 1997, Proceedings of International Conference on Neural Networks (ICNN'97).

[27]  D. Meko Dendroclimatic Reconstruction with Time Varying Predictor Subsets of Tree Indices , 1997 .

[28]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[29]  E. Cook,et al.  Methods of Dendrochronology - Applications in the Environmental Sciences , 1991 .

[30]  Bernard Widrow,et al.  Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[31]  Malcolm K. Hughes,et al.  Reconstructing Summer Temperatures in Northern Fennoscandinavia Back to A.D. 1700 Using Tree-Ring Data from Scots Pine , 1988 .

[32]  C. Willmott ON THE VALIDATION OF MODELS , 1981 .

[33]  H. Fritts,et al.  Tree Rings and Climate. , 1978 .

[34]  Sašo Džeroski,et al.  On the use of machine learning methods to study the relationships between tree-ring characteristics and the environment , 2017 .

[35]  T. Levanič,et al.  Pedunculate oak's (Quercus robur L.) conductive elements size dependence on temperature at two Querco-carpinetum sites in Slovenia , 2015 .

[36]  A. Grinsted,et al.  Persistence matters: Estimation of the statistical significance of paleoclimatic reconstruction statistics from autocorrelated time series , 2012 .

[37]  J. R. Quinlan Induction of decision trees , 2004, Machine Learning.

[38]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[39]  J. R. Quinlan Learning With Continuous Classes , 1992 .

[40]  J. Guiot,et al.  The Bootstrapped Response Function , 1991 .