Field and temperature dependence of the skyrmion lattice phase in chiral magnet membranes

Magnetic skyrmions are nanosized magnetization whirls that exhibit topological robustness and nontrivial magnetoelectrical properties, such as emergent electromagnetism and intriguing spin dynamics in the microwave-frequency region. In chiral magnets, skyrmions are usually found at a pocket in the phase diagram in the vicinity of the ordering temperature, wherein they order in the form of a hexagonal skyrmion lattice (SkL). It is generally believed that this equilibrium SkL phase is a uniform, long-range-ordered magnetic structure with a well-defined lattice constant. Here, using high-resolution small-angle resonant elastic x-ray scattering, we study the field and temperature dependence of the skyrmion lattice in FeGe and Cu2OSeO3 membranes. Indeed, Cu2OSeO3 shows the expected rigid skyrmion lattice, known from bulk samples, that is unaffected by tuning field and temperature within the phase pocket. In stark contrast, the lattice constant and skyrmion size in FeGe membranes undergo a continuous evolution within the skyrmion phase pocket, whereby the lattice constant changes by up to 15% and the magnetic scattering intensity varies significantly. Using micromagnetic modeling, it is found that for FeGe the competing energy terms contributing to the formation of the skyrmion lattice fully explain this breathing behavior. In contrast, for Cu2OSeO3 this stabilizing energy balance is less affected by the smaller field variation across the skyrmion pocket, leading to the observed rigid lattice structure.

[1]  S. Wang,et al.  Helical magnetic ordering in thin FeGe membranes , 2019, Physical Review B.

[2]  Y. Tokura,et al.  Element-specific soft x-ray spectroscopy, scattering, and imaging studies of the skyrmion-hosting compound Co8Zn8Mn4 , 2019, Physical Review B.

[3]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[4]  H. Berger,et al.  Observation of two independent skyrmion phases in a chiral magnetic material , 2018, Nature Physics.

[5]  H. Berger,et al.  Reciprocal space tomography of 3D skyrmion lattice order in a chiral magnet , 2018, Proceedings of the National Academy of Sciences.

[6]  T. Hesjedal,et al.  Direct Observation of Twisted Surface skyrmions in Bulk Crystals. , 2018, Physical review letters.

[7]  H. Berger,et al.  Manipulation of skyrmion motion by magnetic field gradients , 2018, Nature Communications.

[8]  Y. Tokura,et al.  Aggregation and collapse dynamics of skyrmions in a non-equilibrium state , 2018, Nature Physics.

[9]  S. Blügel,et al.  Experimental observation of chiral magnetic bobbers in B20-type FeGe , 2017, Nature Nanotechnology.

[10]  Y. Tokura,et al.  Emergence and magnetic-field variation of chiral-soliton lattice and skyrmion lattice in the strained helimagnet Cu 2 OSeO 3 , 2017 .

[11]  T. Hesjedal,et al.  Direct experimental determination of spiral spin structures via the dichroism extinction effect in resonant elastic soft x-ray scattering , 2017 .

[12]  S. Blugel,et al.  Experimental observation of magnetic bobbers for a new concept of magnetic solid-state memory , 2017, 1706.04654.

[13]  Stefan Blügel,et al.  Control of morphology and formation of highly geometrically confined magnetic skyrmions , 2017, Nature Communications.

[14]  Hiroshi Oike,et al.  Skyrmion lattice structural transition in MnSi , 2017, Science Advances.

[15]  Y. Tokura,et al.  Directional electric-field induced transformation from skyrmion lattice to distinct helices in multiferroic Cu2OSeO3 , 2017 .

[16]  I. Smalyukh,et al.  Static three-dimensional topological solitons in fluid chiral ferromagnets and colloids. , 2017, Nature materials.

[17]  T. Hesjedal,et al.  Direct experimental determination of the topological winding number of skyrmions in Cu2OSeO3 , 2017, Nature Communications.

[18]  K. Khoo,et al.  Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers. , 2016, Nature materials.

[19]  H. Berger,et al.  Imaging and manipulation of skyrmion lattice domains in Cu2OSeO3 , 2016, 1611.08168.

[20]  R. Wiesendanger Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics , 2016 .

[21]  R. Stamps,et al.  Internal structure of hexagonal skyrmion lattices in cubic helimagnets , 2016, 1606.04681.

[22]  H. Berger,et al.  Resonant elastic x-ray scattering from the skyrmion lattice in Cu 2 OSeO 3 , 2016, 1606.01194.

[23]  H. Berger,et al.  Multidomain Skyrmion Lattice State in Cu2OSeO3. , 2016, Nano letters.

[24]  C. Pfleiderer,et al.  Generic Aspects of Skyrmion Lattices in Chiral Magnets , 2016, 1603.08730.

[25]  A. Locatelli,et al.  Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. , 2016, Nature nanotechnology.

[26]  K. Harada,et al.  Chiral Surface Twists and Skyrmion Stability in Nanolayers of Cubic Helimagnets. , 2015, Physical review letters.

[27]  Benjamin Krueger,et al.  Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. , 2015, Nature materials.

[28]  Y. Tokura,et al.  Dynamical process of skyrmion-helical magnetic transformation of the chiral-lattice magnet FeGe probed by small-angle resonant soft x-ray scattering , 2015 .

[29]  M Kubota,et al.  Large anisotropic deformation of skyrmions in strained crystal. , 2015, Nature nanotechnology.

[30]  Y. Tokura,et al.  Topological stability versus thermal agitation in a metastable magnetic skyrmion lattice , 2015, 1506.00363.

[31]  Yu-heng Zhang,et al.  Edge-mediated skyrmion chain and its collective dynamics in a confined geometry , 2015, Nature Communications.

[32]  J. White,et al.  A new class of chiral materials hosting magnetic skyrmions beyond room temperature , 2015, Nature Communications.

[33]  Y. Tokura,et al.  Real-Space Observation of Short-Period Cubic Lattice of Skyrmions in MnGe. , 2015, Nano letters.

[34]  A. Fert,et al.  Skyrmions at room temperature : From magnetic thin films to magnetic multilayers , 2015, 1502.07853.

[35]  Kang L. Wang,et al.  Blowing magnetic skyrmion bubbles , 2015, Science.

[36]  Mark L. Vousden,et al.  Ground state search, hysteretic behaviour, and reversal mechanism of skyrmionic textures in confined helimagnetic nanostructures , 2013, Scientific Reports.

[37]  Jeroen van den Brink,et al.  The quantum nature of skyrmions and half-skyrmions in Cu2OSeO3 , 2014, Nature Communications.

[38]  A. N. Bogdanov,et al.  Chiral skyrmions in cubic helimagnet films: The role of uniaxial anisotropy , 2013, 1311.1191.

[39]  Y. Tokura,et al.  Topological properties and dynamics of magnetic skyrmions. , 2013, Nature nanotechnology.

[40]  Y. Tokura,et al.  Microwave magnetoelectric effect via skyrmion resonance modes in a helimagnetic multiferroic , 2013, Nature Communications.

[41]  C. Pfleiderer,et al.  Unwinding of a Skyrmion Lattice by Magnetic Monopoles , 2013, Science.

[42]  A. N. Bogdanov,et al.  Three-dimensional skyrmion states in thin films of cubic helimagnets , 2012, 1212.5970.

[43]  Y. Tokura,et al.  Observation of Skyrmions in a Multiferroic Material , 2012, Science.

[44]  A. S. Ovchinnikov,et al.  Chiral magnetic soliton lattice on a chiral helimagnet. , 2012, Physical review letters.

[45]  T. Matsuda,et al.  Real-space observation of skyrmion lattice in helimagnet MnSi thin samples. , 2012, Nano letters.

[46]  C. Pfleiderer,et al.  Emergent electrodynamics of skyrmions in a chiral magnet , 2012, Nature Physics.

[47]  H. Braun Topological effects in nanomagnetism: from superparamagnetism to chiral quantum solitons , 2012 .

[48]  M. Schmidt,et al.  Precursor phenomena at the magnetic ordering of the cubic helimagnet FeGe. , 2011, Physical review letters.

[49]  Y. Tokura,et al.  Large topological Hall effect in a short-period helimagnet MnGe. , 2011, Physical review letters.

[50]  N. Nagaosa,et al.  Dynamics of Skyrmion crystals in metallic thin films. , 2011, Physical review letters.

[51]  Y. Tokura,et al.  Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. , 2011, Nature materials.

[52]  Jin-Hong Park,et al.  Skyrmion lattice in a two-dimensional chiral magnet , 2010, 1006.3973.

[53]  Y. Tokura,et al.  Real-space observation of a two-dimensional skyrmion crystal , 2010, Nature.

[54]  U. Rößler,et al.  Stabilization of skyrmion textures by uniaxial distortions in noncentrosymmetric cubic helimagnets , 2009, 0904.4842.

[55]  P. Böni,et al.  Skyrmion Lattice in a Chiral Magnet , 2009, Science.

[56]  S. Komineas,et al.  Topology and dynamics in ferromagnetic media , 1995, cond-mat/9511126.

[57]  A. Hubert,et al.  Thermodynamically stable magnetic vortex states in magnetic crystals , 1994 .

[58]  A. N. Bogdanov,et al.  Thermodynamically stable "vortices" in magnetically ordered crystals. The mixed state of magnets , 1989 .