Number conserving particle-hole RPA for superfluid nuclei

[1]  L. Robledo,et al.  Symmetry restoration in mean-field approaches , 2019, Journal of Physics G: Nuclear and Particle Physics.

[2]  L. Robledo,et al.  Mean field and beyond description of nuclear structure with the Gogny force: a review , 2018, Journal of Physics G: Nuclear and Particle Physics.

[3]  Y. Niu,et al.  Low-energy quadrupole states in neutron-rich tin nuclei , 2018, Physical Review C.

[4]  J. M. Arias,et al.  Phase diagram of an extended Agassi model , 2018, 1804.05787.

[5]  Gustavo E. Scuseria,et al.  Combining symmetry collective states with coupled-cluster theory: Lessons from the Agassi model Hamiltonian , 2017, 1703.02123.

[6]  M. Martini,et al.  Gogny-Hartree-Fock-Bogolyubov plus quasiparticle random-phase approximation predictions of the M 1 strength function and its impact on radiative neutron capture cross section , 2016 .

[7]  M. Martini,et al.  Mean field based calculations with the Gogny force: Some theoretical tools to explore the nuclear structure , 2014 .

[8]  J. Terasaki,et al.  Self-consistent Skyrme quasiparticle random-phase approximation for use in axially symmetric nuclei of arbitrary mass , 2010 .

[9]  P. Ring,et al.  Relativistic random-phase approximation in axial symmetry , 2008, 0909.2300.

[10]  M. V. Stoitsov,et al.  Particle-Number Projection and the Density Functional Theory , 2007, 0708.0441.

[11]  M. Strayer,et al.  The Nuclear Many-Body Problem , 2004 .

[12]  G. Röpke,et al.  Generalized Brückner-Hartree-Fock theory and self-consistent RPA , 1998 .

[13]  Sarriguren,et al.  Spin M1 excitations in deformed nuclei from self-consistent Hartree-Fock plus random-phase approximation. , 1996, Physical review. C, Nuclear physics.

[14]  O. Civitarese,et al.  Suppression of the two-neutrino ββ decay in a particle number projected quasiparticle random phase approximation , 1991 .

[15]  P. Schuck,et al.  Towards a variational theory for RPA-like correlations and fluctuations , 1990 .

[16]  R. R. Chowdhury,et al.  Generalized Tamm–Dancoff approximation (GTDA) and random‐phase approximation (GRPA) calculations on LiH, Be, and Li2 , 1987 .

[17]  W. Heiss,et al.  Random-phase approximation and broken symmetry , 1986 .

[18]  P. Ring,et al.  Symmetry-conserving random phase approximation☆ , 1985 .

[19]  J. Linderberg,et al.  State vectors and propagators in many‐electron theory. A unified approach , 1977 .

[20]  J. Bang,et al.  MODEL CALCULATIONS WITH PAIRING FORCES. , 1970 .

[21]  D. Agassi Validity of the BCS and RPA approximations in the pairing-plus-monopole solvable model , 1968 .

[22]  J. Suhonen Calculation of the beta and beta beta decay observables of 48Ca using QRPA with and without particle-number projection , 1993 .

[23]  Faessler,et al.  Number-conserving random phase approximation with analytically integrated matrix elements. , 1990, Physical review. C, Nuclear physics.

[24]  David J Rowe,et al.  EQUATIONS-OF-MOTION METHOD AND THE EXTENDED SHELL MODEL. , 1968 .

[25]  P. Ring,et al.  1 2 Se p 20 09 Relativistic RPA in axial symmetry , 2022 .