An accurate prediction of electronic structure, mechanical stability and optical response of BaCuF3 fluoroperovskite for solar cell application

[1]  Mubashar Ali,et al.  First‐principles investigation of structural, mechanical, and optoelectronic properties of Hf2AX (A═Al, Si and X═C, N) MAX phases , 2023, Journal of the American Ceramic Society.

[2]  M. Younis,et al.  Layer-sliding-mediated reversible tuning of interfacial electronic and optical properties of intercalated ZrO2/MoS2 van der Waals heterostructure , 2023, Journal of Materials Research.

[3]  M. Younis,et al.  CO adsorption on two-dimensional 2H-ZrO2 and its effect on the interfacial electronic properties: implications for sensing , 2023, Physica Scripta.

[4]  Junaid Munir,et al.  Layer-sliding-mediated controllable synthetic strategy for the preparation of multifunctional materials , 2023, Materials Today Communications.

[5]  Junaid Munir,et al.  Achieving controllable multifunctionality through layer sliding. , 2023, Journal of molecular graphics & modelling.

[6]  Mubashar Ali,et al.  Efficient hydrogen storage in LiMgF3: A first principle study , 2023, International Journal of Hydrogen Energy.

[7]  Peng Zhang,et al.  MIL-101(Fe)/BiOBr S-scheme photocatalyst for promoting photocatalytic abatement of Cr(VI) and enrofloxacin antibiotic: Performance and mechanism , 2023, Chinese Journal of Catalysis.

[8]  V. Tirth,et al.  Appealing perspectives of the structural, electronic, elastic and optical properties of LiRCl3 (R = Be and Mg) halide perovskites: a DFT study , 2023, RSC advances.

[9]  Xugeng Guo,et al.  Boosting the Efficiency of Dye-Sensitized Solar Cells by a Multifunctional Composite Photoanode to 14.13. , 2023, Angewandte Chemie.

[10]  Yanping Liu,et al.  Ta3N5/CdS Core–Shell S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Removal of Antibiotic Tetracycline and Cr(VI): Performance and Mechanism Insights , 2023, Advanced Fiber Materials.

[11]  M. Sagir,et al.  CASTEP study for mapping phase stability, and Optical parameters of Halide perovskite CsSiBr3 for photovoltaic and solar cell applications , 2023, Inorganic Chemistry Communications.

[12]  J. Liu,et al.  Structural, dynamical, thermodynamic properties of CdYF3 perovskite , 2023, Experimental and Theoretical NANOTECHNOLOGY.

[13]  S. Radiman,et al.  Investigation of structural and optical properties of In-doped AlSb nanostructures , 2023, Experimental and Theoretical NANOTECHNOLOGY.

[14]  Yanping Liu,et al.  Novel Cd0.5Zn0.5S/Bi2MoO6 S-scheme heterojunction for boosting the photodegradation of antibiotic enrofloxacin: Degradation pathway, mechanism and toxicity assessment , 2022, Separation and Purification Technology.

[15]  G. Murtaza,et al.  First-principles calculations to investigate structural, elastic, optical, and thermoelectric properties of narrow band gap semiconducting Cubic Ternary Fluoroperovskites Barium Based BaMF3 (M = Ag and Cu) Compounds , 2022, Journal of Materials Research and Technology.

[16]  A. Hussain,et al.  Structural, electronic, optical and mechanical properties of oxide-based perovskite ABO3 (A = Cu, Nd and B = Sn, Sc): A DFT study , 2022, Journal of Solid State Chemistry.

[17]  Asad Ullah,et al.  Theoretical study of different aspects of Al-based Fluoroperovskite AlMF3 (M = Cu, Mn) compounds using TB-MBJ potential approximation method for generation of energy , 2022, Results in Physics.

[18]  A. Bouhemadou,et al.  Elastic, electronic, optical and thermoelectric properties of the novel Zintl-phase Ba2ZnP2 , 2022, Solid State Sciences.

[19]  Xiaobo Chen,et al.  Constructing Cd0.5Zn0.5S/Bi2WO6 S-scheme heterojunction for boosted photocatalytic antibiotic oxidation and Cr(VI) reduction , 2022, Advanced Powder Materials.

[20]  Y. Al-Douri,et al.  Investigation of structural, magneto-electronic, elastic, mechanical and thermoelectric properties of novel lead-free halide double perovskite Cs2AgFeCl6: First-principles calcuations , 2022, Journal of Physics and Chemistry of Solids.

[21]  S. Al Mechanical and electronic properties of perovskite hydrides LiCaH3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{\m , 2021, The European Physical Journal B.

[22]  H. Joshi,et al.  First-Principles Calculations to Investigate Electronic, optical, Thermodynamic and Thermoelectric properties of New Na6ZnX4 (X=O, S, se) ternary alloys , 2021, Journal of Physics and Chemistry of Solids.

[23]  M. Ameri,et al.  Theoretical investigations of structural, mechanical, electronic and optical properties of NaScSi alloy , 2021, Emergent Materials.

[24]  Nana Lyu,et al.  Electronic, magnetism and optical properties of transition metals adsorbed puckered arsenene , 2021 .

[25]  A. Bouhemadou,et al.  First-principles predictions of the structural, electronic, optical and elastic properties of the zintl-phases AE3GaAs3 (AE = Sr, Ba) , 2021 .

[26]  A. Benyoussef,et al.  Hydrogen storage properties of perovskite-type MgCoH₃ under strain effect , 2020 .

[27]  G. Murtaza,et al.  First‐principle investigation of XSrH 3 (X = K and Rb) perovskite‐type hydrides for hydrogen storage , 2020 .

[28]  Jia Fu,et al.  First principle study on electronic structure, elastic properties and debye temperature of pure and doped KCaF3 , 2020, Vacuum.

[29]  M Zahid Hasan,et al.  Understanding the influences of Mg doping on the physical properties of SrMoO3 perovskite , 2020 .

[30]  S. Al,et al.  Lithium metal hydrides (Li2CaH4 and Li2SrH4) for hydrogen storage; mechanical, electronic and optical properties , 2020 .

[31]  A. Gencer,et al.  CaXH3 (X = Mn, Fe, Co) perovskite‐type hydrides for hydrogen storage applications , 2019, International Journal of Energy Research.

[32]  J. A. Abraham,et al.  DFT-focused estimation of mechanical, thermoelectric and thermodynamic properties of ACdF3 (A=K, Rb, Cs) fluroperovskites , 2019, International Journal of Modern Physics B.

[33]  T. Oku,et al.  First-principles calculation study of electronic structures of alkali metals (Li, K, Na and Rb)-incorporated formamidinium lead halide perovskite compounds , 2019, Applied Surface Science.

[34]  Zongping Shao,et al.  Recent advances in anion-doped metal oxides for catalytic applications , 2019, Journal of Materials Chemistry A.

[35]  Jia Guo,et al.  Star-Shaped Molecules as Dopant-Free Hole Transporting Materials for Efficient Perovskite Solar Cells: Multiscale Simulation. , 2018, Chemical record.

[36]  R. Ahmed,et al.  Structural, electronic, optical and thermodynamic investigations of NaXF 3 (X = Ca and Sr): First-principles calculations , 2018 .

[37]  Y. Al-Douri,et al.  First-principles calculations of pressure and temperature dependence of thermodynamic properties of anti-perovskite BiNBa3 compound , 2017 .

[38]  A. Bouhemadou,et al.  First-principles calculations to investigate the structural, electronic and optical properties of Zn 1 - x Mg x Te ternary alloys , 2017 .

[39]  Y. Al-Douri,et al.  Optical properties of (Pb 1- x Mn x S) 1- y Fe y materials from first-principles calculations , 2017 .

[40]  S. Mirza,et al.  Elastic properties of perovskite-type hydrides LiBeH3 and NaBeH3 for hydrogen storage , 2017 .

[41]  G. Murtaza,et al.  Ab Initio Study of the Mechanical, Thermal and Optoelectronic Properties of the Cubic CsBaF3 , 2015 .

[42]  Y. Al-Douri,et al.  Predictive study of structural, electronic, magnetic and thermodynamic properties of XFeO3 (X = Ag, Zr and Ru) multiferroic materials in cubic perovskite structure: first-principles calculations , 2015 .

[43]  M. H. Murad,et al.  Some static relativistic compact charged fluid spheres in general relativity , 2014 .

[44]  P. Ramasamy,et al.  Irradiation effect on luminescence properties of fluoroperovskite single crystal (LiBaF3:Eu2+) , 2014 .

[45]  D. Balamurugan,et al.  A DFT study on the structural and electronic properties of ZnTe nanoclusters , 2013 .

[46]  F. Litimein,et al.  First-principle calculations to investigate the elastic and thermodynamic properties of RBRh3 (R = Sc, Y and La) perovskite compounds , 2012 .

[47]  P. S. Pizani,et al.  Influence of minor oxidation of the precursor powders to form nanocrystalline CdTe by mechanical alloying , 2008 .

[48]  Xiaojuan Liu,et al.  Publisher's Note: Crystal structures and elastic properties of superhard Ir N 2 and Ir N 3 from first principles [Phys. Rev. B 76 , 054115 (2007)] , 2007 .

[49]  Kasper P. Jensen,et al.  Performance of density functionals for first row transition metal systems. , 2007, The Journal of chemical physics.

[50]  Z. Charifi,et al.  High pressure study of structural and electronic properties of calcium chalcogenides , 2005 .

[51]  K. Chashka,et al.  Berthelot-type conductivity of porous Sr2CrReO6: Examination of an old empirical relation , 2004 .

[52]  Matt Probert,et al.  First-principles simulation: ideas, illustrations and the CASTEP code , 2002 .

[53]  Schwarz,et al.  Applications of Engel and Vosko's generalized gradient approximation in solids. , 1994, Physical review. B, Condensed matter.

[54]  David Jiles,et al.  Introduction to the Electronic Properties of Materials , 1994 .

[55]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[56]  Wei Jiang,et al.  Enhanced antibiotic degradation performance of Cd0.5Zn0.5S/Bi2MoO6 S-scheme photocatalyst by carbon dot modification , 2023, Journal of Materials Science & Technology.

[57]  K. Lv,et al.  S-Scheme photocatalyst TaON/Bi2WO6 nanofibers with oxygen vacancies for efficient abatement of antibiotics and Cr(VI): Intermediate eco-toxicity analysis and mechanistic insights , 2022, Chinese Journal of Catalysis.

[58]  J. Ladik,et al.  B3LYP, BLYP and PBE DFT band structures of the nucleotide base stacks , 2005 .