On Observability and Pseudo State Estimation of Fractional Order Systems

In this paper, fractional order system observability is discussed. A representation of these systems that involves a classical linear integer system and a system described by a parabolic equation is used to define the system real state and to conclude that the system state is approximately observable. However, it is also shown that the pseudo state space representation, usually encountered in the literature for fractional systems, can be used to design Luenberger like observers that permits an estimation of important variables in the system. Such an observer is finally used in order to estimate the temperature in a thermal system from a temperature measure at a different abscissa.

[1]  Alain Oustaloup,et al.  On Observability of Fractional Order Systems , 2009 .

[2]  Hans Zwart,et al.  An Introduction to Infinite-Dimensional Linear Systems Theory , 1995, Texts in Applied Mathematics.

[3]  Samir Ladaci,et al.  On Fractional Adaptive Control , 2006 .

[4]  D. Matignon,et al.  Some Results on Controllability and Observability of Finite-dimensional Fractional Differential Systems , 1996 .

[5]  Maamar Bettayeb,et al.  A sliding mode control for linear fractional systems with input and state delays , 2009 .

[6]  A. Oustaloup La dérivation non entière , 1995 .

[7]  Maamar Bettayeb,et al.  A NOTE ON THE CONTROLLABILITY AND THE OBSERVABILITY OF FRACTIONAL DYNAMICAL SYSTEMS , 2006 .

[8]  M. Fliess,et al.  On linear systems with a fractional derivation: introductory theory and examples , 1998 .

[9]  B. d'Andrea-Novel,et al.  Observer-based controllers for fractional differential systems , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[10]  Alain Oustaloup,et al.  How to impose physically coherent initial conditions to a fractional system , 2010 .

[11]  Carl F. Lorenzo,et al.  Initialization in fractional order systems , 2001, 2001 European Control Conference (ECC).

[12]  O. Agrawal A General Formulation and Solution Scheme for Fractional Optimal Control Problems , 2004 .

[13]  Jun-Guo Lu,et al.  Robust Stability and Stabilization of Fractional-Order Interval Systems: An LMI Approach , 2009, IEEE Transactions on Automatic Control.

[14]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[15]  R. Bagley,et al.  The fractional order state equations for the control of viscoelastically damped structures , 1989 .

[16]  I. Podlubny Fractional differential equations , 1998 .

[17]  Jun-Guo Lu,et al.  Robust Stability and Stabilization of Fractional-Order Interval Systems with the Fractional Order $\alpha$: The $0≪\alpha≪1$ Case , 2010, IEEE Transactions on Automatic Control.

[18]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[19]  J. A. Tenreiro Machado,et al.  Tuning of PID Controllers Based on Bode’s Ideal Transfer Function , 2004 .

[20]  Gérard Montseny,et al.  Diffusive representation of pseudo-differential time-operators , 1998 .

[21]  Vicente Feliu,et al.  Optimal tunings for fractional PIDµ controllers , 2005 .

[22]  K. Diethelm,et al.  Fractional Calculus: Models and Numerical Methods , 2012 .

[23]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[24]  D. Matignon Stability properties for generalized fractional differential systems , 1998 .

[25]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[26]  Alain Oustaloup,et al.  A testing bench for fractional order systems education , 2008 .

[27]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[28]  Mathieu Moze,et al.  Pseudo state feedback stabilization of commensurate fractional order systems , 2009, 2009 European Control Conference (ECC).

[29]  Xavier Moreau,et al.  The CRONE Suspension , 1996 .

[30]  R. Bagley,et al.  Fractional order state equations for the control of viscoelasticallydamped structures , 1991 .

[31]  A. Oustaloup Systèmes asservis linéaires d'ordre fractionnaire : théorie et pratique , 1983 .

[32]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .