Using a Chebyshev approach for the minimum-time open-loop control of constrained MIMO systems
暂无分享,去创建一个
[1] Gamal N. Elnagar,et al. Pseudospectral Chebyshev Optimal Control of Constrained Nonlinear Dynamical Systems , 1998, Comput. Optim. Appl..
[2] Gamal N. Elnagar. State-control spectral Chebyshev parameterization for linearly constrained quadratic optimal control problems , 1997 .
[3] M. S. Salim,et al. A Chebyshev approximation for solving optimal control problems , 1995 .
[4] L. Fox,et al. Chebyshev polynomials in numerical analysis , 1970 .
[5] Luca Consolini,et al. Generalized bang-bang control for feedforward constrained regulation , 2006, CDC.
[6] A. Quarteroni,et al. Numerical Approximation of Partial Differential Equations , 2008 .
[7] Aurelio Piazzi,et al. Robust set-point constrained regulation via dynamic inversion† , 2001 .
[8] Adolf Hermann Glattfelder,et al. Control Systems with Input and Output Constraints , 2003 .
[9] Thomas F. Coleman,et al. Optimization Toolbox User's Guide , 1998 .
[10] A. Piazzi,et al. Minimum-time feedforward control with input and output constraints , 2006, 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control.
[11] John McPhee,et al. Determination of Minimum-Time Maneuvers for a Robotic Manipulator Using Numerical Optimization Methods∗ , 1999 .
[12] Hussein Jaddu,et al. Computation of optimal control trajectories using chebyshev polynomials : Parameterization, and quadratic programming , 1999 .
[13] Jacques Vlassenbroeck,et al. A chebyshev polynomial method for optimal control with state constraints , 1988, Autom..