Using a Chebyshev approach for the minimum-time open-loop control of constrained MIMO systems

In this paper we propose the use of a technique based on Chebyshev polynomials approximation for determining the minimum-time rest-to-rest openloop control law for multi-input multi-output (MIMO) continuous-time systems with input and output constraints. The optimal input can be determined, without discretising the system, by suitably approximating the state variables and the input signals by means of Chebyshev series and by subsequently solving a constrained optimizsation problem. Simulation results confirm the effectiveness of the technique.

[1]  Gamal N. Elnagar,et al.  Pseudospectral Chebyshev Optimal Control of Constrained Nonlinear Dynamical Systems , 1998, Comput. Optim. Appl..

[2]  Gamal N. Elnagar State-control spectral Chebyshev parameterization for linearly constrained quadratic optimal control problems , 1997 .

[3]  M. S. Salim,et al.  A Chebyshev approximation for solving optimal control problems , 1995 .

[4]  L. Fox,et al.  Chebyshev polynomials in numerical analysis , 1970 .

[5]  Luca Consolini,et al.  Generalized bang-bang control for feedforward constrained regulation , 2006, CDC.

[6]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[7]  Aurelio Piazzi,et al.  Robust set-point constrained regulation via dynamic inversion† , 2001 .

[8]  Adolf Hermann Glattfelder,et al.  Control Systems with Input and Output Constraints , 2003 .

[9]  Thomas F. Coleman,et al.  Optimization Toolbox User's Guide , 1998 .

[10]  A. Piazzi,et al.  Minimum-time feedforward control with input and output constraints , 2006, 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control.

[11]  John McPhee,et al.  Determination of Minimum-Time Maneuvers for a Robotic Manipulator Using Numerical Optimization Methods∗ , 1999 .

[12]  Hussein Jaddu,et al.  Computation of optimal control trajectories using chebyshev polynomials : Parameterization, and quadratic programming , 1999 .

[13]  Jacques Vlassenbroeck,et al.  A chebyshev polynomial method for optimal control with state constraints , 1988, Autom..