Computability in Anonymous Networks: Revocable vs. Irrecovable Outputs

What can be computed in an anonymous network, where nodes are not equipped with unique identifiers? It turns out that the answer to this question depends on the commitment of the nodes to their first computed output value: Two classes of problems solvable in anonymous networks are defined, where in the first class nodes are allowed to revoke their outputs and in the second class they are not. These two classes are then related to the class of all centrally solvable network problems, observing that the three classes form a strict linear hierarchy, and for several classic and/or characteristic problems in distributed computing, we determine the exact class to which they belong.

[1]  Michael J. Fischer,et al.  Stably Computable Properties of Network Graphs , 2005, DCOSS.

[2]  Sebastiano Vigna,et al.  An Effective Characterization of Computability in Anonymous Networks , 2001, DISC.

[3]  M. Kaufmann What Can Be Computed Locally ? , 2003 .

[4]  Seif Haridi,et al.  Distributed Algorithms , 1992, Lecture Notes in Computer Science.

[5]  Alan M. Frieze,et al.  The Cover Times of Random Walks on Hypergraphs , 2011, SIROCCO.

[6]  Sebastiano Vigna,et al.  Computing anonymously with arbitrary knowledge , 1999, PODC '99.

[7]  Mika Göös,et al.  Locally checkable proofs , 2011, PODC '11.

[8]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[9]  Maurice Herlihy,et al.  The topological structure of asynchronous computability , 1999, JACM.

[10]  David Eisenstat,et al.  The computational power of population protocols , 2006, Distributed Computing.

[11]  Jean-Sébastien Sereni,et al.  Toward more localized local algorithms: removing assumptions concerning global knowledge , 2011, PODC '11.

[12]  Yves Métivier,et al.  Local Terminations and Distributed Computability in Anonymous Networks , 2008, DISC.

[13]  David Eisenstat,et al.  Stably computable predicates are semilinear , 2006, PODC '06.

[14]  Masafumi Yamashita,et al.  Computing on Anonymous Networks: Part I-Characterizing the Solvable Cases , 1996, IEEE Trans. Parallel Distributed Syst..

[15]  David G. Kirkpatrick,et al.  Probabilistic solitude verification on a ring , 1986, PODC '86.

[16]  Nicola Santoro,et al.  Groupings and Pairings in Anonymous Networks , 2006, DISC.

[17]  Roger Wattenhofer,et al.  Stone Age Distributed Computing , 2012, ArXiv.

[18]  Sebastiano Vigna,et al.  Universal dynamic synchronous self–stabilization , 2002, Distributed Computing.

[19]  Pierre Fraigniaud,et al.  On the Impact of Identifiers on Local Decision , 2012, OPODIS.

[20]  Noga Alon,et al.  A Fast and Simple Randomized Parallel Algorithm for the Maximal Independent Set Problem , 1985, J. Algorithms.

[21]  Yves Métivier,et al.  Analysis of fully distributed splitting and naming probabilistic procedures and applications , 2015, Theor. Comput. Sci..

[22]  Paola Flocchini,et al.  Sorting and election in anonymous asynchronous rings , 2004, J. Parallel Distributed Comput..

[23]  Andrzej Pelc,et al.  Oracle size: a new measure of difficulty for communication tasks , 2006, PODC '06.

[24]  Paul G. Spirakis,et al.  Computing on a partially eponymous ring , 2006, Theor. Comput. Sci..

[25]  Shay Kutten,et al.  Proof labeling schemes , 2005, PODC '05.

[26]  Pierre Fraigniaud,et al.  Local Distributed Decision , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[27]  Baruch Schieber,et al.  Calling names in nameless networks , 1989, PODC '89.

[28]  Michael J. Fischer,et al.  Computation in networks of passively mobile finite-state sensors , 2004, PODC '04.

[29]  Jukka Suomela,et al.  Survey of local algorithms , 2013, CSUR.

[30]  Amos Israeli,et al.  Uniform Dynamic Self-Stabilizing Leader Election , 1997, IEEE Trans. Parallel Distributed Syst..

[31]  Michael Luby,et al.  A simple parallel algorithm for the maximal independent set problem , 1985, STOC '85.

[32]  Baruch Schieber,et al.  Calling Names on Nameless Networks , 1994, Inf. Comput..

[33]  Dana Angluin,et al.  Local and global properties in networks of processors (Extended Abstract) , 1980, STOC '80.

[34]  Michael J. Fischer,et al.  Stabilizing Consensus in Mobile Networks , 2006, DCOSS.

[35]  Alon Itai,et al.  A Fast and Simple Randomized Parallel Algorithm for Maximal Matching , 1986, Inf. Process. Lett..

[36]  Pierre Fraigniaud,et al.  Locality and Checkability in Wait-Free Computing , 2011, DISC.

[37]  Pierre Fraigniaud,et al.  Randomized distributed decision , 2012, Distributed Computing.

[38]  Maurice Herlihy,et al.  A classification of wait-free loop agreement tasks , 2003, Theor. Comput. Sci..

[39]  Shlomi Dolev,et al.  Self Stabilization , 2004, J. Aerosp. Comput. Inf. Commun..

[40]  James Aspnes,et al.  An Introduction to Population Protocols , 2007, Bull. EATCS.

[41]  Alon Itai,et al.  Symmetry breaking in distributive networks , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[42]  Nathan Linial,et al.  Locality in Distributed Graph Algorithms , 1992, SIAM J. Comput..

[43]  Rachid Guerraoui,et al.  What Can Be Implemented Anonymously? , 2005, DISC.

[44]  Zhiwei Xu,et al.  Classifying rendezvous tasks of arbitrary dimension , 2009, Theor. Comput. Sci..