ZnO nanowire growth and devices

Abstract The large surface area of ZnO nanorods makes them attractive for gas and chemical sensing, and the ability to control their nucleation sites makes them candidates for micro-lasers or memory arrays. In addition, they might be doped with transition metal (TM) ions to make spin-polarized light sources. To date, most of the work on ZnO nanostructures has focused on the synthesis methods and there have been only a few reports of the electrical characteristics. We review fabrication methods for obtaining device functionality from single ZnO nanorods. A key aspect is the use of sonication to facilitate transfer of the nanorods from the initial substrate on which they are grown to another substrate for device fabrication. Examples of devices fabricated using this method are briefly described, including metal-oxide semiconductor field effect depletion-mode transistors with good saturation behavior, a threshold voltage of ∼−3 V and a maximum transconductance of order 0.3 mS/mm and Pt Schottky diodes with excellent ideality factors of 1.1 at 25 °C and very low (1.5 × 10 −10  A, equivalent to 2.35 A cm −2 , at −10 V) reverse currents. The photoresponse showed only a minor component with long decay times (tens of seconds) thought to originate from surface states. These results show the ability to manipulate the electron transport in nanoscale ZnO devices.

[1]  D. C. Reynolds,et al.  Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy , 2002 .

[2]  H. Ohta,et al.  Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor , 2003, Science.

[3]  W. Roos,et al.  Ultraviolet-emitting ZnO nanowhiskers prepared by a vapor transport process on prestructured surfaces with self-assembled polymers , 2003 .

[4]  Daihua Zhang,et al.  Electronic transport studies of single-crystalline In2O3 nanowires , 2003 .

[5]  Gregory P. Harmer,et al.  Semiconducting metal oxide sensor array for the selective detection of combustion gases , 2003 .

[6]  Philip J. Poole,et al.  Spatially controlled, nanoparticle-free growth of InP nanowires , 2003 .

[7]  ZnO/cubic (Mg,Zn)O radial nanowire heterostructures , 2005 .

[8]  K. Świątek,et al.  Ordered magnetic phase in Cd1-xMnxTe/Cd1-y-zMgyZnzTe : N heterostructures: magnetooptical studies , 2000 .

[9]  Chang Uk Jung,et al.  Ferromagnetic properties of Zn 1¿x Mn x O epitaxial thin films , 2002 .

[10]  Shui-Tong Lee,et al.  Semiconductor nanowires: synthesis, structure and properties , 2000 .

[11]  Gopalan,et al.  Theory of surface and bulk excitations in ferromagnetic semiconductors. , 1990, Physical review. B, Condensed matter.

[12]  Ulrike Diebold,et al.  Epitaxial growth and properties of ferromagnetic co-doped TiO2 anatase , 2001 .

[13]  Lars Samuelson,et al.  One-dimensional heterostructures in semiconductor nanowhiskers , 2002 .

[14]  V. Varadarajan,et al.  Site-specific growth of Zno nanorods using catalysis-driven molecular-beam epitaxy , 2002 .

[15]  P. Searson,et al.  ZnO quantum particle thin films fabricated by electrophoretic deposition , 1999 .

[16]  Charles R. Martin,et al.  A general template-based method for the preparation of nanomaterials , 1997 .

[17]  H. Ehrenreich,et al.  Exchange mechanisms in diluted magnetic semiconductors , 1985 .

[18]  H. Ohno,et al.  Making nonmagnetic semiconductors ferromagnetic , 1998, Science.

[19]  Hiroshi Katayama-Yoshida,et al.  Material Design for Transparent Ferromagnets with ZnO-Based Magnetic Semiconductors , 2000 .

[20]  Akira Ohtomo,et al.  MgxZn1−xO as a II–VI widegap semiconductor alloy , 1998 .

[21]  D. C. Reynolds,et al.  Zeeman Effects in the Edge Emission and Absorption of ZnO , 1965 .

[22]  Masashi Kawasaki,et al.  High Mobility Thin Film Transistors with Transparent ZnO Channels , 2003 .

[23]  Benjamin J. Norris,et al.  ZnO-based transparent thin-film transistors , 2003 .

[24]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[25]  Jih-Jen Wu,et al.  LOW-TEMPERATURE GROWTH OF WELL-ALIGNED ZNO NANORODS BY CHEMICAL VAPOR DEPOSITION , 2002 .

[26]  Peidong Yang,et al.  Nanowire ultraviolet photodetectors and optical switches , 2002 .

[27]  Hideo Hosono,et al.  Transparent Oxide Optoelectronics , 2004 .

[28]  Tae Hyun Sung,et al.  Top-seeded melt growth of Y-Ba-Cu-O superconductor with multiseeding , 2000 .

[29]  G. Meng,et al.  Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties , 2000 .

[30]  Charles M. Lieber,et al.  Size-Dependent Photoluminescence from Single Indium Phosphide Nanowires , 2002 .

[31]  Ning Wang,et al.  FORMATION OF ZNO NANOSTRUCTURES BY A SIMPLE WAY OF THERMAL EVAPORATION , 2002 .

[32]  Paul H. Holloway,et al.  Enhancement-mode thin-film field-effect transistor using phosphorus-doped (Zn,Mg)O channel , 2004 .

[33]  Herbert Wolf,et al.  Acceptors and Donors in the Wide-Gap Semiconductors ZnO and SnO2 , 1986 .

[34]  C. Kim,et al.  Catalyst-adsorptive oxide-semiconductor gas sensors , 1993 .

[35]  Noritaka Usami,et al.  Optical properties of ZnO rods formed by metalorganic chemical vapor deposition , 2003 .

[36]  H. Ohno,et al.  Zener model description of ferromagnetism in zinc-blende magnetic semiconductors , 2000, Science.

[37]  Shui-Tong Lee,et al.  Synthesis and microstructure of gallium phosphide nanowires , 2001 .

[38]  Gyu-Chul Yi,et al.  Quantum Confinement Observed in ZnO/ZnMgO Nanorod Heterostructures , 2003 .

[39]  David C. Look,et al.  Recent Advances in ZnO Materials and Devices , 2001 .

[40]  Shuyuan Zhang,et al.  Catalytic synthesis and photoluminescence of β-Ga2O3 nanowires , 2001 .

[41]  Zhong Lin Wang Nanostructures of zinc oxide , 2004 .

[42]  Charles M. Lieber,et al.  Epitaxial core–shell and core–multishell nanowire heterostructures , 2002, Nature.

[43]  M. Schlenker,et al.  Near Field Optics and Magnetism , 1999 .

[44]  Q. Wan,et al.  Electronic transport through individual ZnO nanowires , 2004 .

[45]  Guanghai Li,et al.  Ordered indium-oxide nanowire arrays and their photoluminescence properties , 2001 .

[46]  Jing Wang,et al.  Ga2O3 nanowires prepared by physical evaporation , 1999 .

[47]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[48]  Dapeng Yu,et al.  Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach , 2001 .

[49]  V. Dneprovskii,et al.  Optical properties of excitons in semiconductor (InP)-insulator quantum wires , 2000 .

[50]  D. Look,et al.  Residual Native Shallow Donor in ZnO , 1999 .

[51]  Xingcai Wu,et al.  Crystalline gallium oxide nanowires: intensive blue light emitters , 2000 .

[52]  J. D. Sternhagen,et al.  Development of a micromachined hazardous gas sensor array , 2003 .

[53]  Cheol Jin Lee,et al.  Synthesis of high-purity GaP nanowires using a vapor deposition method , 2003 .

[54]  Haroon Ahmed,et al.  Silicon single electron memory cell , 1998 .

[55]  Stuart A. Wolf,et al.  Spintronics, Electronics for the Next Millenium? , 2000 .

[56]  Masashi Kawasaki,et al.  An oxide-diluted magnetic semiconductor: Mn-doped ZnO , 1999 .

[57]  F. Capasso Band-Gap Engineering: From Physics and Materials to New Semiconductor Devices , 1987, Science.

[58]  Hirotoshi Sato,et al.  Highly transparent and conductive group IV impurity‐doped ZnO thin films prepared by radio frequency magnetron sputtering , 1993 .

[59]  David P. Norton,et al.  Wide band gap ferromagnetic semiconductors and oxides , 2003 .

[60]  Chenglu Lin,et al.  Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors , 2004 .

[61]  Harry A. Atwater,et al.  Nonlithographic epitaxial SnxGe1−x dense nanowire arrays grown on Ge(001) , 2003 .

[62]  Toru Aoki,et al.  ZnO diode fabricated by excimer-laser doping , 2000 .

[63]  P. A. Smith,et al.  Layer-by-Layer Assembly of Rectifying Junctions in and on Metal Nanowires † , 2001 .

[64]  Zhong Lin Wang,et al.  Nanobelts of Semiconducting Oxides , 2001, Science.

[65]  Peidong Yang,et al.  Germanium Nanowire Growth via Simple Vapor Transport , 2000 .

[66]  T. Suski,et al.  Ferromagnetism of (Pb, Sn, Mn) Te under high pressure , 1987 .

[67]  Xiangfeng Duan,et al.  Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires , 2001, Science.

[68]  Gyu-Tae Kim,et al.  Photocurrent in ZnO nanowires grown from Au electrodes , 2004 .

[69]  G. Iafrate,et al.  Theory and applications of near ballistic transport in semiconductors , 1988, Proc. IEEE.

[70]  John D. Budai,et al.  Advances in wide bandgap materials for semiconductor spintronics , 2003 .

[71]  T. S. Moss,et al.  Handbook on semiconductors , 1980 .

[72]  Takayuki Ishibashi,et al.  Ferromagnetic phenomenon revealed in the chalcopyrite semiconductor CdGeP2:Mn , 2001 .

[73]  A. K. Sharma,et al.  Refractive indices and absorption coefficients of MgxZn1−xO alloys , 2000 .

[74]  Satoshi Masuda,et al.  Transparent thin film transistors using ZnO as an active channel layer and their electrical properties , 2003 .

[75]  Tomasz Dietl,et al.  Observation of a Ferromagnetic Transition Induced by Two-Dimensional Hole Gas in Modulation-Doped CdMnTe Quantum Wells , 1997 .

[76]  C. Ong,et al.  The growth mode and microstructure of Ag-doped YBa2Cu3O7−δ thin films prepared by dual beam pulsed-laser deposition , 2000 .

[77]  Gyu-Chul Yi,et al.  Excitonic emissions observed in ZnO single crystal nanorods , 2003 .

[78]  T. Tsurumi,et al.  Isothermal capacitance transient spectroscopy for deep levels in Co- and Mn-doped ZnO single crystals , 2002 .

[79]  David P. Norton,et al.  Ferromagnetism in Mn-implanted ZnO:Sn single crystals , 2003 .

[80]  H. Koinuma,et al.  STRUCTURE AND OPTICAL PROPERTIES OF ZNO/MG0.2ZN0.8O SUPERLATTICES , 1999 .

[81]  Y. H. Jeong,et al.  A key to room-temperature ferromagnetism in Fe-doped ZnO: Cu , 2002 .

[82]  Seonuk Park,et al.  Schottky nanocontacts on ZnO nanorod arrays , 2003 .

[83]  J. Wager,et al.  Transparent Electronics , 2003, Science.

[84]  S. Noor Mohammad,et al.  InAs nanowires and whiskers grown by reaction of indium with GaAs , 2003 .

[85]  John L. Freeouf,et al.  Atomic layer deposition of ZnSe/CdSe superlattice nanowires , 2002 .

[86]  Zhifeng Ren,et al.  ZnO nanobridges and nanonails , 2003 .

[87]  Charles M. Lieber,et al.  A laser ablation method for the synthesis of crystalline semiconductor nanowires , 1998, Science.

[88]  K. Sakurai,et al.  Growth of ZnO by Molecular Beam Epitaxy Using NO2 as Oxygen Source , 1999 .

[89]  Takafumi Yao,et al.  Structural and magnetic properties of Mn3O4 films grown on MgO(001) substrates by plasma-assisted MBE , 2000 .

[90]  W. Vellinga,et al.  Atomic structure and orientation relations of interfaces between Ag and ZnO , 1997 .

[91]  W. C. Hughes,et al.  MBE growth and properties of ZnO on sapphire and SiC substrates , 1996 .

[92]  Jacek K. Furdyna,et al.  Diluted magnetic semiconductors , 1988 .

[93]  S. Yu,et al.  Room-Temperature Ultraviolet Lasing from Zinc Oxide Microtubes , 2003 .

[94]  Tomoji Kawai,et al.  Magnetic and electric properties of transition-metal-doped ZnO films , 2001 .

[95]  Bruce E. Gnade,et al.  Mechanisms behind green photoluminescence in ZnO phosphor powders , 1996 .

[96]  R. Hoffman ZnO-channel thin-film transistors: Channel mobility , 2004 .

[97]  Tae Jae Lee,et al.  Field emission from well-aligned zinc oxide nanowires grown at low temperature , 2002 .

[98]  Majewski,et al.  Ferromagnetic superexchange in Cr-based diluted magnetic semiconductors. , 1996, Physical review. B, Condensed matter.

[99]  A. R. Hutson Hall Effect Studies of Doped Zinc Oxide Single Crystals , 1957 .

[100]  ZnO Thin Film Transistors for Flexible Electronics , 2003 .

[101]  Scott L. Whittenburg,et al.  Monte Carlo simulation on the indirect exchange interactions of Co-doped ZnO film , 2002 .

[102]  Peidong Yang,et al.  Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires , 2002 .

[103]  Masashi Kawasaki,et al.  Room-Temperature Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide , 2001, Science.

[104]  Yasutaka Takahashi,et al.  Thin Film Transistor of ZnO Fabricated by Chemical Solution Deposition , 2001 .

[105]  R. McLean,et al.  Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering , 2003 .

[106]  Qi Wang,et al.  Properties, and Applications , 2005 .

[107]  M. Meyyappan,et al.  Growth of Epitaxial Nanowires at the Junctions of Nanowalls , 2003, Science.

[108]  John M. Zavada,et al.  Room temperature magnetism in GaMnP produced by both ion implantation and molecular-beam epitaxy , 2002 .

[109]  Carles Cané,et al.  A novel single chip thin film metal oxide array , 2003 .

[110]  张哉根,et al.  Leu-M , 1991 .

[111]  Tomasz Dietl,et al.  FREE CARRIER-INDUCED FERROMAGNETISM IN STRUCTURES OF DILUTED MAGNETIC SEMICONDUCTORS , 1997 .

[112]  Gyu-Tae Kim,et al.  Field-effect transistor made of individual V2O5 nanofibers , 2000 .

[113]  Tomasz Dietl Ferromagnetic semiconductors , 2002 .

[114]  Marc Lamy de la Chapelle,et al.  Silica-assisted catalytic growth of oxide and nitride nanowires , 2001 .

[115]  Eicke R. Weber,et al.  Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport , 2001 .

[116]  T. Story,et al.  Correlations between Electronic and Magnetic Properties in Semimagnetic Semiconductors , 1997 .

[117]  Chun-Sing Lee,et al.  Electrical properties of zinc oxide nanowires and intramolecular p–n junctions , 2003 .

[118]  John F. Muth,et al.  Optical and Structural Properties of Epitaxial MgxZn1-xO Alloys , 1999 .

[119]  Wenjun Wang,et al.  Growth and morphologies of large-scale SnO2 nanowires, nanobelts and nanodendrites , 2003 .