Image Reconstruction From Double Random Projection

We present double random projection methods for reconstruction of imaging data. The methods draw upon recent results in the random projection literature, particularly on low-rank matrix approximations, and the reconstruction algorithm has only two simple and noniterative steps, while the reconstruction error is close to the error of the optimal low-rank approximation by the truncated singular-value decomposition. We extend the often-required symmetric distributions of entries in a random-projection matrix to asymmetric distributions, which can be more easily implementable on imaging devices. Experimental results are provided on the subsampling of natural images and hyperspectral images, and on simulated compressible matrices. Comparisons with other random projection methods are also provided.

[1]  Rebecca Willett,et al.  Compressive coded aperture superresolution image reconstruction , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[2]  Zhinan Zhang,et al.  The rank of a random matrix , 2007, Appl. Math. Comput..

[3]  Martin Vetterli,et al.  Data Compression and Harmonic Analysis , 1998, IEEE Trans. Inf. Theory.

[4]  Wen Gao,et al.  Image Compressive Sensing Recovery via Collaborative Sparsity , 2012, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[5]  Daniel L Marks,et al.  Coding for compressive focal tomography. , 2011, Applied optics.

[6]  Chen Chen,et al.  Compressed-sensing recovery of images and video using multihypothesis predictions , 2011, 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR).

[7]  K. Kelly,et al.  Compressive Sensing Hyperspectral Imager , 2009 .

[8]  James E. Fowler,et al.  Multiscale block compressed sensing with smoothed projected Landweber reconstruction , 2011, 2011 19th European Signal Processing Conference.

[9]  José A. Díaz-García,et al.  Distribution of the generalised inverse of a random matrix and its applications , 2006 .

[10]  Qiang Zhang,et al.  Randomized methods in lossless compression of hyperspectral data , 2013 .

[11]  Hamid Abrishami Moghaddam,et al.  Two-dimensional random projection , 2011, Signal Process..

[12]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[13]  James E. Fowler,et al.  Compressive-Projection Principal Component Analysis , 2009, IEEE Transactions on Image Processing.

[14]  R. Kraus,et al.  Air Force Office of Scientific Research , 2015 .

[15]  Zhihua Zhang Pseudo-inverse multivariate/matrix-variate distributions , 2007 .

[16]  Qiang Zhang,et al.  Joint segmentation and reconstruction of hyperspectral data with compressed measurements. , 2011, Applied optics.

[17]  James E. Fowler,et al.  Block Compressed Sensing of Images Using Directional Transforms , 2010, 2010 Data Compression Conference.

[18]  Qiong Jackson,et al.  An adaptive classifier design for high-dimensional data analysis with a limited training data set , 2001, IEEE Trans. Geosci. Remote. Sens..

[19]  V. Marčenko,et al.  DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .

[20]  Ashwin A. Wagadarikar,et al.  Single disperser design for coded aperture snapshot spectral imaging. , 2008, Applied optics.

[21]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[22]  E. Candès,et al.  Sparsity and incoherence in compressive sampling , 2006, math/0611957.

[23]  M E Gehm,et al.  Single-shot compressive spectral imaging with a dual-disperser architecture. , 2007, Optics express.

[24]  Santosh S. Vempala,et al.  The Random Projection Method , 2005, DIMACS Series in Discrete Mathematics and Theoretical Computer Science.

[25]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[26]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[27]  Justin Romberg,et al.  Practical Signal Recovery from Random Projections , 2005 .

[28]  Qiang Zhang,et al.  Randomized SVD Methods in Hyperspectral Imaging , 2012, J. Electr. Comput. Eng..

[29]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..