An Efficient Projector-Based Passivity Test for Descriptor Systems

An efficient passivity test based on canonical projector techniques is proposed for descriptor systems (DSs) widely encountered in circuit and system modeling. The test features a natural flow that first evaluates the index of a DS, followed by possible decoupling into its proper and improper subsystems. Explicit state-space formulations for respective subsystems are derived to facilitate further processing such as model order reduction and/or passivity enforcement. Efficient projector construction and a fast generalized Hamiltonian test for the proper-part passivity are also elaborated. Numerical examples then confirm the superiority of the proposed method over existing passivity tests for DSs based on linear matrix inequalities or skew-Hamiltonian/Hamiltonian matrix pencils.

[1]  Roswitha März,et al.  Basic Properties of Some Differential-Algebraic Equations , 1989 .

[2]  S. Grivet-Talocia,et al.  On the generation of large passive macromodels for complex interconnect structures , 2006, IEEE Transactions on Advanced Packaging.

[3]  N. Wong,et al.  An efficient passivity test for descriptor systems via canonical projector techniques , 2009, 2009 46th ACM/IEEE Design Automation Conference.

[4]  Ngai Wong,et al.  GHM: A generalized Hamiltonian method for passivity test of impedance/admittance descriptor systems , 2009, 2009 IEEE/ACM International Conference on Computer-Aided Design - Digest of Technical Papers.

[5]  Ren-Cang Li Test Positive Realness of a General Transfer Function Matrix , 2000 .

[6]  Andreas Bartel,et al.  Scientific Computing in Electrical Engineering , 2001 .

[7]  Janne Roos,et al.  Scientific computing in electrical engineering : SCEE 2008 , 2010 .

[8]  Ngai Wong,et al.  Passivity Test of Immittance Descriptor Systems Based on Generalized Hamiltonian Methods , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[9]  I. Balk On a passivity of the Arnoldi based model order reduction for full-wave electromagnetic modeling , 2001 .

[10]  Michel S. Nakhla,et al.  Fast Passivity Verification and Enforcement via Reciprocal Systems for Interconnects With Large Order Macromodels , 2007, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[11]  A. Varga A Descriptor Systems Toolbox for MATLAB , 2000, CACSD. Conference Proceedings. IEEE International Symposium on Computer-Aided Control System Design (Cat. No.00TH8537).

[12]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[13]  R. F. Sincovec,et al.  Solvability, controllability, and observability of continuous descriptor systems , 1981 .

[14]  Michael Günther,et al.  CAD based electric circuit modeling in industry. Pt. 1: Mathematical structure and index of network equations , 1997 .

[15]  A. Antoulas,et al.  A framework for the solution of the generalized realization problem , 2007 .

[16]  Ngai Wong,et al.  A Fast Passivity Test for Stable Descriptor Systems via Skew-Hamiltonian/Hamiltonian Matrix Pencil Transformations , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[17]  Ngai Wong,et al.  Fast sweeping methods for checking passivity of descriptor systems , 2008, APCCAS 2008 - 2008 IEEE Asia Pacific Conference on Circuits and Systems.

[18]  T. Stykel Low rank iterative methods for projected generalized Lyapunov equations , 2005 .

[19]  Michael Guenther,et al.  CAD based electric circuit modeling in industry. Part I: Mathematical structure and index of network equations. Part II: Impact of circuit configurations and parameters , 1999 .

[20]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[21]  Projectors for matrix pencils , 2004 .

[22]  Roswitha März,et al.  Canonical projectors for linear differential algebraic equations , 1996 .

[23]  Sheldon X.-D. Tan,et al.  Second-Order Balanced Truncation for Passive-Order Reduction of RLCK Circuits , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[24]  Luís Miguel Silveira,et al.  Guaranteed passive balancing transformations for model order reduction , 2002, DAC '02.

[25]  BO K Agstr,et al.  A GENERALIZED STATE-SPACE APPROACH FOR THE ADDITIVE DECOMPOSITION OF A TRANSFER MATRIX , 1992 .

[26]  L. Dai,et al.  Singular Control Systems , 1989, Lecture Notes in Control and Information Sciences.

[27]  John N. Warfield,et al.  Synthesis of linear communication networks , 1958 .

[28]  Timo Reis,et al.  Positive real and bounded real balancing for model reduction of descriptor systems , 2010, Int. J. Control.

[29]  TATJANA STYKEL,et al.  Passivity-preserving balanced truncation for electrical circuits , 2008 .

[30]  C. Tischendorf,et al.  Structural analysis of electric circuits and consequences for MNA , 2000 .

[31]  Linda R. Petzold,et al.  Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.

[32]  James Demmel,et al.  The generalized Schur decomposition of an arbitrary pencil A–λB—robust software with error bounds and applications. Part I: theory and algorithms , 1993, TOMS.

[33]  Sanda Lefteriu,et al.  Modeling multi-port systems from frequency response data via tangential interpolation , 2009, 2009 IEEE Workshop on Signal Propagation on Interconnects.

[34]  Delin Chu,et al.  Algebraic Characterizations for Positive Realness of Descriptor Systems , 2008, SIAM J. Matrix Anal. Appl..

[35]  J. Ekman,et al.  Stability of PEEC models with respect to partial element accuracy , 2004, 2004 International Symposium on Electromagnetic Compatibility (IEEE Cat. No.04CH37559).

[36]  Markus Gerdin,et al.  Computation of a Canonical Form for Linear Differential-Algebraic Equations , 2004 .

[37]  Sabine Van Huffel,et al.  SLICOT—A Subroutine Library in Systems and Control Theory , 1999 .

[38]  Paul Van Dooren,et al.  A collection of benchmark examples for model reduction of linear time invariant dynamical systems. , 2002 .

[39]  Roland W. Freund,et al.  An extension of the positive real lemma to descriptor systems , 2004, Optim. Methods Softw..

[40]  S. Grivet-Talocia,et al.  A Comparative Study of Passivity Enforcement Schemes for Linear Lumped Macromodels , 2008, IEEE Transactions on Advanced Packaging.