Neuro-fuzzy identification applied to fault detection in nonlinear systems

This article describes a fault detection method, based on the parity equations approach, to be applied to nonlinear systems. The input–output nonlinear model of the plant, used in the method, has been obtained by a neural fuzzy inference architecture and its learning algorithm. The proposed method is able to detect small abrupt faults, even in systems with unknown nonlinearities. This method has been applied to a real industrial pilot plant, and good performance has been obtained for the experimental case of fault detection in the level sensor of a level control process in the said industrial pilot plant.

[1]  J.J. Gertler,et al.  Survey of model-based failure detection and isolation in complex plants , 1988, IEEE Control Systems Magazine.

[2]  Michel Kinnaert,et al.  Fault diagnosis based on analytical models for linear and nonlinear systems - a tutorial , 2003 .

[3]  Rolf Isermann,et al.  Supervision, fault-detection and fault-diagnosis methods — An introduction , 1997 .

[4]  Raghunathan Rengaswamy,et al.  A review of process fault detection and diagnosis: Part II: Qualitative models and search strategies , 2003, Comput. Chem. Eng..

[5]  L. Felipe Blazquez,et al.  Saturation effects detecting additive faults , 2001, 2001 European Control Conference (ECC).

[6]  Andreas Johansson,et al.  Dynamic threshold generators for robust fault detection in linear systems with parameter uncertainty , 2006, Autom..

[7]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[8]  E. Mizutani,et al.  Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence [Book Review] , 1997, IEEE Transactions on Automatic Control.

[9]  Dingli Yu,et al.  Extension of the parity-space method to fault diagnosis of bilinear systems , 2001, Int. J. Syst. Sci..

[10]  Rolf Isermann,et al.  Neuro-fuzzy systems for diagnosis , 1997, Fuzzy Sets Syst..

[11]  E. A. Woods,et al.  Fault detection, supervision and safety for technical processes , 1993 .

[12]  A. Willsky,et al.  Analytical redundancy and the design of robust failure detection systems , 1984 .

[13]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[14]  Raghunathan Rengaswamy,et al.  A review of process fault detection and diagnosis: Part III: Process history based methods , 2003, Comput. Chem. Eng..

[15]  Paul M. Frank,et al.  Fuzzy logic and neural network applications to fault diagnosis , 1997, Int. J. Approx. Reason..

[16]  Krzysztof Patan,et al.  Artificial Neural Networks for the Modelling and Fault Diagnosis of Technical Processes , 2008 .

[17]  Paul M. Frank,et al.  Application of Fuzzy Logic to Process Supervision and Fault Diagnosis , 1994 .

[18]  Steven X. Ding,et al.  Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools , 2008 .

[19]  Paul M. Frank,et al.  Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy: A survey and some new results , 1990, Autom..

[20]  K. Watanabe,et al.  Fault diagnosis in nonlinear chemical processes. Part I. Theory , 1983 .

[21]  Silvio Simani,et al.  Diagnosis techniques for sensor faults of industrial processes , 2000, IEEE Trans. Control. Syst. Technol..

[22]  Michèle Basseville,et al.  Detection of abrupt changes: theory and application , 1993 .

[23]  John G. Proakis,et al.  Digital Signal Processing: Principles, Algorithms, and Applications , 1992 .

[24]  Masahiro Abe,et al.  Incipient fault diagnosis of chemical processes via artificial neural networks , 1989 .

[25]  D. N. Shields,et al.  Robust fault detection observers for nonlinear polynomial systems , 2001, Int. J. Syst. Sci..

[26]  Fernando Aller,et al.  FAULT DETECTION BY NEURO-FUZZY IDENTIFICATION IN A NONLINEAR SYSTEM , 2006 .

[27]  Marcin Witczak Modelling and Estimation Strategies for Fault Diagnosis of Non-Linear Systems: From Analytical to Soft Computing Approaches , 2007 .

[28]  Feizhou Zhang,et al.  Fault detection using an adaptive fuzzy system , 2002, Int. J. Syst. Sci..

[29]  Qiang Luo,et al.  Robust isolable models for failure diagnosis , 1989 .

[30]  Rolf Isermann,et al.  Fault-diagnosis systems : an introduction from fault detection to fault tolerance , 2006 .

[31]  M. M. Akhter,et al.  Effect of model uncertainty on failure detection: the threshold selector , 1988 .

[32]  Rami Mangoubi Robust Estimation and Failure Detection: A Concise Treatment , 1998 .

[33]  Fredrik Gustafsson,et al.  Adaptive filtering and change detection , 2000 .

[34]  L Felipe Blázquez,et al.  Additive fault detection in nonlinear dynamic systems with saturation. , 2005, ISA transactions.

[35]  Stephen L. Chiu,et al.  Fuzzy Model Identification Based on Cluster Estimation , 1994, J. Intell. Fuzzy Syst..

[36]  Fredrik Gustafsson,et al.  Adaptive Filtering and Change Detection: Gustafsson: Adaptive , 2001 .

[37]  Kenneth A. Loparo,et al.  A neural-network approach to fault detection and diagnosis in industrial processes , 1997, IEEE Trans. Control. Syst. Technol..

[38]  Alex Simpkins,et al.  System Identification: Theory for the User, 2nd Edition (Ljung, L.; 1999) [On the Shelf] , 2012, IEEE Robotics & Automation Magazine.

[39]  L. Felipe Blázquez,et al.  Additive Fault Detection in a Real Nonlinear System with Saturation , 2003 .

[40]  Luis J. de Miguel,et al.  Decision-Making Approaches for a Model-Based FDI Method , 1997 .

[41]  Richard D. Braatz,et al.  Fault Detection and Diagnosis in Industrial Systems , 2001 .

[42]  Tore Hägglund,et al.  Advanced PID Control , 2005 .

[43]  Igor Skrjanc,et al.  Fault detection for nonlinear systems with uncertain parameters based on the interval fuzzy model , 2007, Eng. Appl. Artif. Intell..

[44]  Chuen-Tsai Sun,et al.  Functional equivalence between radial basis function networks and fuzzy inference systems , 1993, IEEE Trans. Neural Networks.

[45]  Chuei-Tin Chang,et al.  Implementation issues concerning the EKF-based fault diagnosis techniques , 1995 .

[46]  Janos Gertler,et al.  Fault detection and diagnosis in engineering systems , 1998 .

[47]  Raghunathan Rengaswamy,et al.  A review of process fault detection and diagnosis: Part I: Quantitative model-based methods , 2003, Comput. Chem. Eng..

[48]  Alex M. Andrew,et al.  Fault Diagnosis: Models, Artificial Intelligence, Applications , 2005 .

[49]  Spyros G. Tzafestas,et al.  System Fault Diagnostics, Reliability and Related Knowledge-Based Approaches , 1987, Springer Netherlands.

[50]  Ronald J. Patton,et al.  A study on neuro-fuzzy systems for fault diagnosis , 2000, Int. J. Syst. Sci..

[51]  Ten-Huei Guo,et al.  Robust Fault Detection , 2003 .

[52]  W. Cholewa,et al.  Fault Diagnosis: Models, Artificial Intelligence, Applications , 2004 .

[53]  Jie Chen,et al.  Robust Model-Based Fault Diagnosis for Dynamic Systems , 1998, The International Series on Asian Studies in Computer and Information Science.

[54]  Hassan Hammouri,et al.  Observer-based approach to fault detection and isolation for nonlinear systems , 1999, IEEE Trans. Autom. Control..

[55]  Marek Kowal,et al.  NEURO-FUZZY STRUCTURES IN FDI SYSTEM , 2002 .

[56]  Luis Felipe Blázquez Quintana,et al.  Diagnóstico de fallos basado en el modelo de la planta para sistemas no lineales , 2003 .

[57]  G. Rizzoni,et al.  Nonlinear Parity Equation Residual Generation for Fault Detection and Isolation , 1994 .

[58]  L. Felipe Blázquez,et al.  Fuzzy logic-based decision-making for fault diagnosis in a DC motor , 2005, Eng. Appl. Artif. Intell..

[59]  Janos Gertler All Linear Methods are Equal - and Extendible to Nonlinearities , 2000 .

[60]  P. Frank,et al.  Deterministic nonlinear observer-based approaches to fault diagnosis: A survey , 1997 .

[61]  H Wang,et al.  Linearization techniques in fault diagnosis of non-linear systems , 2000 .

[62]  Rolf Isermann,et al.  Fault diagnosis of machines via parameter estimation and knowledge processing - Tutorial paper , 1991, Autom..

[63]  Michel Kinnaert,et al.  Robust fault detection based on observers for bilinear systems , 1999, Autom..

[64]  Rami Mangoubi,et al.  Robust Estimation and Failure Detection , 1998 .

[65]  Asoke K. Nandi,et al.  Fault detection using genetic programming , 2005 .

[66]  K. Watanabe,et al.  Fault diagnosis in nonlinear chemical processes. Part II. Application to a chemical reactor , 1983 .

[67]  Krzysztof Patan,et al.  Soft Computing Approaches to Fault Diagnosis for Dynamic Systems , 2001, Eur. J. Control.

[68]  Marcel Staroswiecki,et al.  Extension of Parity Space to Non Linear Polynomial Dynamic Systems , 1997 .

[69]  Luis J. de Miguel,et al.  Fault-diagnostic system using analytical fuzzy redundancy , 2000 .

[70]  Rolf Isermann Fault Diagnosis of Machines via Parameter Estimation and Knowledge Processing , 1991 .

[71]  G Rizzoni,et al.  Nonlinear parity equation based residual generation for diagnosis of automotive engine faults , 1995 .