暂无分享,去创建一个
[1] The matrix eigenvalue problem , 2020 .
[2] Luca Gemignani,et al. A unitary Hessenberg QR-based algorithm via semiseparable matrices , 2005 .
[3] Gianna M. Del Corso,et al. A CMV-Based Eigensolver for Companion Matrices , 2015, SIAM J. Matrix Anal. Appl..
[4] Brian D. Sutton,et al. Random matrix theory, numerical computation and applications , 2013 .
[5] J. Neumann,et al. Numerical inverting of matrices of high order , 1947 .
[6] William B. Gragg,et al. The QR algorithm for unitary Hessenberg matrices , 1986 .
[7] Luca Gemignani,et al. Fast Hessenberg Reduction of Some Rank Structured Matrices , 2017, SIAM J. Matrix Anal. Appl..
[8] G. Birkhoff,et al. Isotropic distributions of test matrices , 1979 .
[9] Gianna M. Del Corso,et al. Compression of unitary rank-structured matrices to CMV-like shape with an application to polynomial rootfinding , 2015, J. Comput. Appl. Math..
[10] F. Mezzadri. How to generate random matrices from the classical compact groups , 2006, math-ph/0609050.
[11] Raf Vandebril,et al. Fast and stable unitary QR algorithm , 2015 .
[12] János Komlós,et al. The eigenvalues of random symmetric matrices , 1981, Comb..
[13] Philipp Birken,et al. Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.
[14] Raf Vandebril,et al. Fast and Backward Stable Computation of Roots of Polynomials , 2015, SIAM J. Matrix Anal. Appl..
[15] J. K. Hunter,et al. Measure Theory , 2007 .
[16] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[17] P. Forrester. Log-Gases and Random Matrices , 2010 .
[18] Raf Vandebril,et al. Fast and Backward Stable Computation of Roots of Polynomials, Part II: Backward Error Analysis; Companion Matrix and Companion Pencil , 2018, SIAM J. Matrix Anal. Appl..
[19] Teodoro Collin. RANDOM MATRIX THEORY , 2016 .
[20] G. Stewart. The Efficient Generation of Random Orthogonal Matrices with an Application to Condition Estimators , 1980 .
[21] E. Wigner,et al. On the statistical distribution of the widths and spacings of nuclear resonance levels , 1951, Mathematical Proceedings of the Cambridge Philosophical Society.
[22] Stanly Steinberg,et al. A Matrix Eigenvalue Problem , 1979 .
[23] Alan Edelman,et al. Random Matrix Theory and Its Innovative Applications , 2013 .
[24] R. Carter. Lie Groups , 1970, Nature.
[25] David S. Watkins,et al. Roots of Polynomials: on twisted QR methods for companion matrices and pencils , 2016 .
[26] J. Wishart. THE GENERALISED PRODUCT MOMENT DISTRIBUTION IN SAMPLES FROM A NORMAL MULTIVARIATE POPULATION , 1928 .
[27] Leandro Moral,et al. Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle , 2002 .
[28] H. Trotter. Eigenvalue distributions of large Hermitian matrices; Wigner's semi-circle law and a theorem of Kac, Murdock, and Szegö , 1984 .
[29] R. Couillet,et al. Random Matrix Methods for Wireless Communications , 2011 .
[30] L. Reichel,et al. A divide and conquer method for unitary and orthogonal eigenproblems , 1990 .
[31] Danny C. Sorensen,et al. An implementation of a divide and conquer algorithm for the unitary eigen problem , 1992, TOMS.
[32] L. Abbott,et al. Eigenvalue spectra of random matrices for neural networks. , 2006, Physical review letters.