Sampling the eigenvalues of random orthogonal and unitary matrices

We develop an efficient algorithm for sampling the eigenvalues of random matrices distributed according to the Haar measure over the orthogonal or unitary group. Our technique samples directly a factorization of the Hessenberg form of such matrices, and then computes their eigenvalues with a tailored core-chasing algorithm. This approach requires a number of floating-point operations that is quadratic in the order of the matrix being sampled, and can be adapted to other matrix groups. In particular, we explain how it can be used to sample the Haar measure over the special orthogonal and unitary groups and the conditional probability distribution obtained by requiring the determinant of the sampled matrix be a given complex number on the complex unit circle.

[1]  The matrix eigenvalue problem , 2020 .

[2]  Luca Gemignani,et al.  A unitary Hessenberg QR-based algorithm via semiseparable matrices , 2005 .

[3]  Gianna M. Del Corso,et al.  A CMV-Based Eigensolver for Companion Matrices , 2015, SIAM J. Matrix Anal. Appl..

[4]  Brian D. Sutton,et al.  Random matrix theory, numerical computation and applications , 2013 .

[5]  J. Neumann,et al.  Numerical inverting of matrices of high order , 1947 .

[6]  William B. Gragg,et al.  The QR algorithm for unitary Hessenberg matrices , 1986 .

[7]  Luca Gemignani,et al.  Fast Hessenberg Reduction of Some Rank Structured Matrices , 2017, SIAM J. Matrix Anal. Appl..

[8]  G. Birkhoff,et al.  Isotropic distributions of test matrices , 1979 .

[9]  Gianna M. Del Corso,et al.  Compression of unitary rank-structured matrices to CMV-like shape with an application to polynomial rootfinding , 2015, J. Comput. Appl. Math..

[10]  F. Mezzadri How to generate random matrices from the classical compact groups , 2006, math-ph/0609050.

[11]  Raf Vandebril,et al.  Fast and stable unitary QR algorithm , 2015 .

[12]  János Komlós,et al.  The eigenvalues of random symmetric matrices , 1981, Comb..

[13]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.

[14]  Raf Vandebril,et al.  Fast and Backward Stable Computation of Roots of Polynomials , 2015, SIAM J. Matrix Anal. Appl..

[15]  J. K. Hunter,et al.  Measure Theory , 2007 .

[16]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[17]  P. Forrester Log-Gases and Random Matrices , 2010 .

[18]  Raf Vandebril,et al.  Fast and Backward Stable Computation of Roots of Polynomials, Part II: Backward Error Analysis; Companion Matrix and Companion Pencil , 2018, SIAM J. Matrix Anal. Appl..

[19]  Teodoro Collin RANDOM MATRIX THEORY , 2016 .

[20]  G. Stewart The Efficient Generation of Random Orthogonal Matrices with an Application to Condition Estimators , 1980 .

[21]  E. Wigner,et al.  On the statistical distribution of the widths and spacings of nuclear resonance levels , 1951, Mathematical Proceedings of the Cambridge Philosophical Society.

[22]  Stanly Steinberg,et al.  A Matrix Eigenvalue Problem , 1979 .

[23]  Alan Edelman,et al.  Random Matrix Theory and Its Innovative Applications , 2013 .

[24]  R. Carter Lie Groups , 1970, Nature.

[25]  David S. Watkins,et al.  Roots of Polynomials: on twisted QR methods for companion matrices and pencils , 2016 .

[26]  J. Wishart THE GENERALISED PRODUCT MOMENT DISTRIBUTION IN SAMPLES FROM A NORMAL MULTIVARIATE POPULATION , 1928 .

[27]  Leandro Moral,et al.  Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle , 2002 .

[28]  H. Trotter Eigenvalue distributions of large Hermitian matrices; Wigner's semi-circle law and a theorem of Kac, Murdock, and Szegö , 1984 .

[29]  R. Couillet,et al.  Random Matrix Methods for Wireless Communications , 2011 .

[30]  L. Reichel,et al.  A divide and conquer method for unitary and orthogonal eigenproblems , 1990 .

[31]  Danny C. Sorensen,et al.  An implementation of a divide and conquer algorithm for the unitary eigen problem , 1992, TOMS.

[32]  L. Abbott,et al.  Eigenvalue spectra of random matrices for neural networks. , 2006, Physical review letters.