Point Sets on the Sphere S2 with Small Spherical Cap Discrepancy

In this paper we study the geometric discrepancy of explicit constructions of uniformly distributed points on the two-dimensional unit sphere. We show that the spherical cap discrepancy of random point sets, of spherical digital nets and of spherical Fibonacci lattices converges with order N−1/2. Such point sets are therefore useful for numerical integration and other computational simulations. The proof uses an area-preserving Lambert map. A detailed analysis of the level curves and sets of the pre-images of spherical caps under this map is given.

[1]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[2]  N. J. A. Sloane,et al.  McLaren’s improved snub cube and other new spherical designs in three dimensions , 1996, Discret. Comput. Geom..

[3]  Steven B. Damelin,et al.  Energy functionals, numerical integration and asymptotic equidistribution on the sphere , 2003, J. Complex..

[4]  J. Beck Sums of distances between points on a sphere — an application of the theory of irregularities of distribution to discrete Geometry , 1984 .

[5]  Hans-Peter Blatt,et al.  Discrepancy Estimates on the Sphere , 1999 .

[6]  J. Korevaar,et al.  Spherical faraday cage for the case of equal point charges and chebyshev-type quadrature on the sphere , 1993 .

[7]  Christoph Aistleitner,et al.  Covering numbers, dyadic chaining and discrepancy , 2011, J. Complex..

[8]  F. Pillichshammer,et al.  Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .

[9]  Peter J. Grabner,et al.  Erdös-Turán type discrepancy bounds , 1991 .

[10]  K. Alexander,et al.  The Central Limit Theorem for Empirical Processes on Vapnik-Cervonenkis Classes , 1987 .

[11]  K. Stolarsky Sums of distances between points on a sphere. II , 1972 .

[12]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[13]  Ian H. Sloan,et al.  Extremal Systems of Points and Numerical Integration on the Sphere , 2004, Adv. Comput. Math..

[14]  Harald Niederreiter,et al.  Integration of nonperiodic functions of two variables by Fibonacci lattice rules , 1994 .

[15]  Michel Talagrand,et al.  Vapnik--Chervonenkis type conditions and uniform Donsker classes of functions , 2003 .

[16]  Xingping Sun,et al.  LeVeque type inequalities and discrepancy estimates for minimal energy configurations on spheres , 2010, J. Approx. Theory.

[17]  Enrique Bendito,et al.  Computational cost of the Fekete problem I: The Forces Method on the 2-sphere , 2009, J. Comput. Phys..

[18]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[19]  A. Lubotzky,et al.  Hecke operators and distributing points on the sphere I , 1986 .

[20]  Ian H. Sloan,et al.  A variational characterisation of spherical designs , 2009, J. Approx. Theory.

[21]  E. Novak,et al.  The inverse of the star-discrepancy depends linearly on the dimension , 2001 .

[22]  M. Talagrand Sharper Bounds for Gaussian and Empirical Processes , 1994 .

[23]  Gerold Wagner Erdős-Turán inequalities for distance functions on spheres. , 1992 .

[24]  Alexander Barvinok,et al.  A course in convexity , 2002, Graduate studies in mathematics.

[25]  Steven B. Damelin,et al.  Corrigendum to Energy functionals, numerical integration and asymptotic equidistribution on the sphere , 2004 .

[26]  Gerhard Larcher On the distribution of s-dimensional Kronecker-sequences , 1988 .

[27]  On the discrepancy of convex plane sets , 1988 .

[28]  C. A. Rogers,et al.  An Introduction to the Geometry of Numbers , 1959 .

[29]  Johann S. Brauchart,et al.  Optimal logarithmic energy points on the unit sphere , 2008, Math. Comput..

[30]  E. Saff,et al.  Discretizing Manifolds via Minimum Energy Points , 2004 .

[31]  A. Lubotzky,et al.  Hecke operators and distributing points on S2. II , 1987 .

[32]  J. Vaaler,et al.  SOME TRIGONOMETRIC EXTREMAL FUNCTIONS AND THE ERDOS-TURAN TYPE INEQUALITIES , 1999 .

[33]  Xiaojun Chen,et al.  Computational existence proofs for spherical t-designs , 2011, Numerische Mathematik.

[34]  J. Seidel,et al.  SPHERICAL CODES AND DESIGNS , 1991 .

[35]  J. Hannay,et al.  Fibonacci numerical integration on a sphere , 2004 .

[36]  E. Saff,et al.  Distributing many points on a sphere , 1997 .

[37]  William W. L. Chen On irregularities of distribution. , 1980 .

[38]  Jacob Korevaar Fekete extreme points and related problems , 1996 .

[39]  Peter Sjögren,et al.  Estimates of mass distributions from their potentials and energies , 1972 .

[40]  Robert F. Tichy,et al.  Spherical designs, discrepancy and numerical integration , 1993 .

[41]  Andriy Bondarenko,et al.  Optimal asymptotic bounds for spherical designs , 2010, 1009.4407.

[42]  R. Dudley Central Limit Theorems for Empirical Measures , 1978 .

[43]  H. Faure Discrépance de suites associées à un système de numération (en dimension s) , 1982 .

[44]  David Haussler,et al.  Sphere Packing Numbers for Subsets of the Boolean n-Cube with Bounded Vapnik-Chervonenkis Dimension , 1995, J. Comb. Theory, Ser. A.

[45]  Optimale Koeffizienten bezüglich zusammengesetzter Zahlen , 1985 .

[46]  Glyn Harman,et al.  Sums of distances between points of a sphere , 1982 .