Point Sets on the Sphere S2 with Small Spherical Cap Discrepancy
暂无分享,去创建一个
[1] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[2] N. J. A. Sloane,et al. McLaren’s improved snub cube and other new spherical designs in three dimensions , 1996, Discret. Comput. Geom..
[3] Steven B. Damelin,et al. Energy functionals, numerical integration and asymptotic equidistribution on the sphere , 2003, J. Complex..
[4] J. Beck. Sums of distances between points on a sphere — an application of the theory of irregularities of distribution to discrete Geometry , 1984 .
[5] Hans-Peter Blatt,et al. Discrepancy Estimates on the Sphere , 1999 .
[6] J. Korevaar,et al. Spherical faraday cage for the case of equal point charges and chebyshev-type quadrature on the sphere , 1993 .
[7] Christoph Aistleitner,et al. Covering numbers, dyadic chaining and discrepancy , 2011, J. Complex..
[8] F. Pillichshammer,et al. Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .
[9] Peter J. Grabner,et al. Erdös-Turán type discrepancy bounds , 1991 .
[10] K. Alexander,et al. The Central Limit Theorem for Empirical Processes on Vapnik-Cervonenkis Classes , 1987 .
[11] K. Stolarsky. Sums of distances between points on a sphere. II , 1972 .
[12] Lauwerens Kuipers,et al. Uniform distribution of sequences , 1974 .
[13] Ian H. Sloan,et al. Extremal Systems of Points and Numerical Integration on the Sphere , 2004, Adv. Comput. Math..
[14] Harald Niederreiter,et al. Integration of nonperiodic functions of two variables by Fibonacci lattice rules , 1994 .
[15] Michel Talagrand,et al. Vapnik--Chervonenkis type conditions and uniform Donsker classes of functions , 2003 .
[16] Xingping Sun,et al. LeVeque type inequalities and discrepancy estimates for minimal energy configurations on spheres , 2010, J. Approx. Theory.
[17] Enrique Bendito,et al. Computational cost of the Fekete problem I: The Forces Method on the 2-sphere , 2009, J. Comput. Phys..
[18] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[19] A. Lubotzky,et al. Hecke operators and distributing points on the sphere I , 1986 .
[20] Ian H. Sloan,et al. A variational characterisation of spherical designs , 2009, J. Approx. Theory.
[21] E. Novak,et al. The inverse of the star-discrepancy depends linearly on the dimension , 2001 .
[22] M. Talagrand. Sharper Bounds for Gaussian and Empirical Processes , 1994 .
[23] Gerold Wagner. Erdős-Turán inequalities for distance functions on spheres. , 1992 .
[24] Alexander Barvinok,et al. A course in convexity , 2002, Graduate studies in mathematics.
[25] Steven B. Damelin,et al. Corrigendum to Energy functionals, numerical integration and asymptotic equidistribution on the sphere , 2004 .
[26] Gerhard Larcher. On the distribution of s-dimensional Kronecker-sequences , 1988 .
[27] On the discrepancy of convex plane sets , 1988 .
[28] C. A. Rogers,et al. An Introduction to the Geometry of Numbers , 1959 .
[29] Johann S. Brauchart,et al. Optimal logarithmic energy points on the unit sphere , 2008, Math. Comput..
[30] E. Saff,et al. Discretizing Manifolds via Minimum Energy Points , 2004 .
[31] A. Lubotzky,et al. Hecke operators and distributing points on S2. II , 1987 .
[32] J. Vaaler,et al. SOME TRIGONOMETRIC EXTREMAL FUNCTIONS AND THE ERDOS-TURAN TYPE INEQUALITIES , 1999 .
[33] Xiaojun Chen,et al. Computational existence proofs for spherical t-designs , 2011, Numerische Mathematik.
[34] J. Seidel,et al. SPHERICAL CODES AND DESIGNS , 1991 .
[35] J. Hannay,et al. Fibonacci numerical integration on a sphere , 2004 .
[36] E. Saff,et al. Distributing many points on a sphere , 1997 .
[37] William W. L. Chen. On irregularities of distribution. , 1980 .
[38] Jacob Korevaar. Fekete extreme points and related problems , 1996 .
[39] Peter Sjögren,et al. Estimates of mass distributions from their potentials and energies , 1972 .
[40] Robert F. Tichy,et al. Spherical designs, discrepancy and numerical integration , 1993 .
[41] Andriy Bondarenko,et al. Optimal asymptotic bounds for spherical designs , 2010, 1009.4407.
[42] R. Dudley. Central Limit Theorems for Empirical Measures , 1978 .
[43] H. Faure. Discrépance de suites associées à un système de numération (en dimension s) , 1982 .
[44] David Haussler,et al. Sphere Packing Numbers for Subsets of the Boolean n-Cube with Bounded Vapnik-Chervonenkis Dimension , 1995, J. Comb. Theory, Ser. A.
[45] Optimale Koeffizienten bezüglich zusammengesetzter Zahlen , 1985 .
[46] Glyn Harman,et al. Sums of distances between points of a sphere , 1982 .