CO2 enrichment reduces reproductive dominance in competing stands of Ambrosia artemisiifolia (common ragweed)

[1]  F. Bazzaz,et al.  THE GENETIC COMPONENT IN PLANT SIZE HIERARCHIES: NORMS OF REACTION TO DENSITY IN A POLYGONUM SPECIES' , 1993 .

[2]  F. Bazzaz,et al.  Light Acquisition and Growth by Competing Individuals in CO 2 - Enriched Atmospheres: Consequences for Size Structure in Regenerating Birch Stands , 1997 .

[3]  Tadaki Hirose,et al.  CO2 ELEVATION, CANOPY PHOTOSYNTHESIS, AND OPTIMAL LEAF AREA INDEX , 1997 .

[4]  Jacob Weiner,et al.  The meaning and measurement of size hierarchies in plant populations , 1984, Oecologia.

[5]  Mark Stitt,et al.  The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background , 1999 .

[6]  Peter S. Curtis,et al.  Plant reproduction under elevated CO2 conditions: a meta‐analysis of reports on 79 crop and wild species , 2002 .

[7]  F. Bazzaz,et al.  Seedling‐Scale Environmental Heterogeneity Influences Individual Fitness and Population Structure , 1984 .

[8]  F. Bazzaz,et al.  Production of allergenic pollen by ragweed (Ambrosia artemisiifolia L.) is increased in CO2-enriched atmospheres. , 2002, Annals of allergy, asthma & immunology : official publication of the American College of Allergy, Asthma, & Immunology.

[9]  D. Ackerly,et al.  Plant growth and reproduction along CO2 gradients: non‐linear responses and implications for community change , 1995 .

[10]  J. Weiner,et al.  Asymmetric competition in plant populations. , 1990, Trends in ecology & evolution.

[11]  Sokal Rr,et al.  Biometry: the principles and practice of statistics in biological research 2nd edition. , 1981 .

[12]  F. Bazzaz,et al.  The density dependence of plant responses to elevated CO2 , 1999 .

[13]  L. Ziska,et al.  Rising CO2 and pollen production of common ragweed (Ambrosia artemisiifolia), a known allergy-inducing species: implications for public health. , 2000 .

[14]  Ha Abul-Fatih The biology of Ambrosia trifida L. II. Germination, emergence, growth and survival , 1979 .

[15]  F. Bazzaz,et al.  EARLY VS. ASYMPTOTIC GROWTH RESPONSES OF HERBACEOUS PLANTS TO ELEVATED CO2 , 1999 .

[16]  C. Körner Ecological impacts of atmospheric CO2 enrichment on terrestrial ecosystems , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[17]  G. Berntson,et al.  Below-ground architectural and mycorrhizal responses to elevated CO2 in Betula alleghaniensis populations , 1997 .

[18]  J. Haefner Photosynthesis and Plant Growth , 1996 .

[19]  K. Hikosaka,et al.  Effects of elevated CO2 on the size structure in even‐aged monospecific stands of Chenopodium album , 2003 .

[20]  F. Bazzaz,et al.  THE BIOLOGY OF AMBROSIA TRIFIDA L. , 1979 .

[21]  G. Berntson,et al.  CHARACTERIZING THE SIZE DEPENDENCE OF RESOURCE ACQUISITION WITHIN CROWDED PLANT POPULATIONS , 2000 .

[22]  Tadaki Hirose,et al.  CO2 ELEVATION, CANOPY PHOTOSYNTHESIS, ANDOPTIMAL LEAF AREA INDEX , 1997 .

[23]  F. Bazzaz,et al.  Density-dependent responses of reproductive allocation to elevated atmospheric CO2 in Phytolacca americana. , 2003, The New phytologist.

[24]  A. Ellison,et al.  Elevated CO2 alters anatomy, physiology, growth, and reproduction of red mangrove (Rhizophora mangle L.) , 1996, Oecologia.

[25]  W. Arp Effects of source‐sink relations on photosynthetic acclimation to elevated CO2 , 1991 .

[26]  J. Ehleringer,et al.  Quantum Yields for CO(2) Uptake in C(3) and C(4) Plants: Dependence on Temperature, CO(2), and O(2) Concentration. , 1977, Plant physiology.

[27]  C. Körner,et al.  In deep shade, elevated CO2 increases the vigor of tropical climbing plants , 2002 .

[28]  C. Osborne,et al.  oes Long-Term Elevation of CO, Concentration lncrease Photosynthesis in Forest Floor Vegetation?' , 1997 .

[29]  A. Makino,et al.  Photosynthesis and Plant Growth at Elevated Levels of CO2 , 1999 .

[30]  F. James Rohlf,et al.  Biometry: The Principles and Practice of Statistics in Biological Research , 1969 .

[31]  C. Körner,et al.  Influence of elevated CO2 on canopy development and red:far-red ratios in two-storied stands ofRicinus communis , 1993, Oecologia.

[32]  T. Huxman,et al.  Reproductive allocation and seed production in Bromus madritensis ssp. rubens at elevated atmospheric CO2 , 1999 .

[33]  M. Navas,et al.  Plant growth and competition at elevated CO2 : on winners, losers and functional groups. , 2003, The New phytologist.

[34]  W. Deen,et al.  Influence of temperature, photoperiod, and irradiance on the phenological development of common ragweed (Ambrosia artemisiifolia) , 1998, Weed Science.

[35]  R. Hunt,et al.  The biology of Ambrosia trifida L. III. Growth and biomass allocation. , 1979 .

[36]  M. L. Williams,et al.  The effects of increased atmospheric carbon dioxide and temperature on carbon partitioning, source‐sink relations and respiration , 1991 .

[37]  F. Bazzaz,et al.  Interference of winter annuals with Ambrosia artemisiifolia in early successional fields , 1975 .