Combinatorial relaxation algorithm for mixed polynomial matrices

Abstract.The notion of mixed polynomial matrices is a mathematical tool for faithful description of discrete physical/engineering dynamical systems. It distinguishes two kinds of numbers: fixed constants that account for conservation laws and independent parameters that represent physical characteristics.This paper presents an algorithm for computing the maximum degree of subdeterminants of a fixed order in a polynomial matrix that is obtained by substituting specific numerical values to the independent physical parameters of a mixed polynomial matrix. The algorithm first computes the generic solution by a combinatorial method, i.e., by solving a valuated matroid intersection problem associated with the mixed polynomial matrix, and then finds the exact solution for the specified parameter values with a minimum amount of numerical computation.This is intended to be a nontrivial application of mathematical programming techniques to computer algebra and systems analysis.

[1]  Kazuo Murota Finding optimal minors of valuated bimatroids , 1995 .

[2]  Kazuo Murota,et al.  Computing Puiseux-Series Solutions to Determinantal Equations via Combinatorial Relaxation , 1990, SIAM J. Comput..

[3]  K. Murota,et al.  Structure at infinity of structured descriptor systems and its applications , 1991 .

[4]  Linda R. Petzold,et al.  Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.

[5]  Iain S. Duff,et al.  Computing the structural index , 1986 .

[6]  J. W. van der Woude,et al.  On the structure at infinity of a structured system , 1991 .

[7]  C. W. Gear,et al.  Differential-algebraic equations index transformations , 1988 .

[8]  Pawel Bujakiewicz,et al.  Maximum weighted matching for high index differential algebraic equations , 1994 .

[9]  W. Marquardt,et al.  Structural analysis of differential-algebraic equation systems—theory and applications , 1995 .

[10]  Kazuo Murota,et al.  On the Degree of Mixed Polynomial Matrices , 1998, SIAM J. Matrix Anal. Appl..

[11]  C. W. Gear,et al.  Differential algebraic equations, indices, and integral algebraic equations , 1990 .

[12]  K. Murota Use of the concept of physical dimensions in the structural approach to systems analysis , 1985 .

[13]  Andreas W. M. Dress,et al.  Well-layered maps and the maximum-degree k × k-subdeterminant of a matrix of rational functions , 1995 .

[14]  Ferdinand Svaricek,et al.  An improved graph-theoretic algorithm for computing the structure at infinity of linear systems , 1990, 29th IEEE Conference on Decision and Control.

[15]  Kazuo Murota,et al.  Computing the Degree of Determinants Via Combinatorial Relaxation , 1995, SIAM J. Comput..

[16]  M. Iri,et al.  Structural solvability of systems of equations —A mathematical formulation for distinguishing accurate and inaccurate numbers in structural analysis of systems— , 1985 .

[17]  Kazuo Murota,et al.  Valuated Matroid Intersection II: Algorithms , 1996, SIAM J. Discret. Math..

[18]  Andreas W. M. Dress,et al.  Well-layered maps—A class of greedily optimizable set functions , 1995 .

[19]  Kazuo Murota,et al.  Matrices and Matroids for Systems Analysis , 2000 .

[20]  Christian Commault,et al.  Disturbance rejection for structured systems , 1991 .

[21]  Kazuo Murota,et al.  Hierarchical decomposition of symmetric discrete systems by matroid and group theories , 1993, Math. Program..

[22]  C. Pantelides The consistent intialization of differential-algebraic systems , 1988 .

[23]  Kazuo Murota,et al.  Valuated Matroid Intersection I: Optimality Criteria , 1996, SIAM J. Discret. Math..