PET: Probabilistic Estimating Tree for Large-Scale RFID Estimation

Estimating the number of RFID tags in the region of interest is an important task in many RFID applications. In this paper, we propose a novel approach for efficiently estimating the approximate number of RFID tags. Compared with existing approaches, the proposed Probabilistic Estimating Tree (PET) protocol achieves O(loglogn) estimation efficiency, which remarkably reduces the estimation time while meeting the accuracy requirement. PET also largely reduces the computation and memory overhead at RFID tags. As a result, we are able to apply PET with passive RFID tags and provide scalable and inexpensive solutions for large-scale RFID systems. We validate the efficacy and effectiveness of PET through theoretical analysis as well as extensive simulations. Our results suggest that PET outperforms existing approaches in terms of estimation accuracy, efficiency, and overhead.

[1]  John Capetanakis,et al.  Tree algorithms for packet broadcast channels , 1979, IEEE Trans. Inf. Theory.

[2]  Bo Sheng,et al.  How to Monitor for Missing RFID tags , 2008, 2008 The 28th International Conference on Distributed Computing Systems.

[3]  Bo Sheng,et al.  Efficient Tag Identification in Mobile RFID Systems , 2010, 2010 Proceedings IEEE INFOCOM.

[4]  Ali Esmaili,et al.  Probability and Random Processes , 2005, Technometrics.

[5]  Yunhao Liu,et al.  LANDMARC: Indoor Location Sensing Using Active RFID , 2004, Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, 2003. (PerCom 2003)..

[6]  Jeffrey Considine,et al.  Approximate aggregation techniques for sensor databases , 2004, Proceedings. 20th International Conference on Data Engineering.

[7]  H. Tijms Understanding Probability: Chance Rules in Everyday Life , 2004 .

[8]  Philippe Flajolet,et al.  Probabilistic Counting Algorithms for Data Base Applications , 1985, J. Comput. Syst. Sci..

[9]  Murali S. Kodialam,et al.  Anonymous Tracking Using RFID Tags , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[10]  Yanghee Choi,et al.  Analysis of RFID anti-collision algorithms using smart antennas , 2004, SenSys '04.

[11]  Tom Ahlkvist Scharfeld An analysis of the fundamental constraints on low cost passive radio-frequency identification system design , 2001 .

[12]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[13]  Rui Zhang,et al.  Fast identification of the missing tags in a large RFID system , 2011, 2011 8th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks.

[14]  Guoliang Xing,et al.  Negotiate power and performance in the reality of RFID systems , 2010, 2010 IEEE International Conference on Pervasive Computing and Communications (PerCom).

[15]  Murali S. Kodialam,et al.  Fast and reliable estimation schemes in RFID systems , 2006, MobiCom '06.

[16]  Roy Want,et al.  An introduction to RFID technology , 2006, IEEE Pervasive Computing.

[17]  Bo Sheng,et al.  Severless Search and Authentication Protocols for RFID , 2007, Fifth Annual IEEE International Conference on Pervasive Computing and Communications (PerCom'07).

[18]  Wonjun Lee,et al.  Adaptive splitting protocols for RFID tag collision arbitration , 2006, MobiHoc '06.

[19]  Chun-Hee Lee,et al.  Efficient storage scheme and query processing for supply chain management using RFID , 2008, SIGMOD Conference.

[20]  Philippe Flajolet,et al.  Mellin Transforms and Asymptotics: Harmonic Sums , 1995, Theor. Comput. Sci..

[21]  Rajeev Rastogi,et al.  Processing set expressions over continuous update streams , 2003, SIGMOD '03.

[22]  Yunhao Liu,et al.  Cardinality Estimation for Large-Scale RFID Systems , 2008, IEEE Transactions on Parallel and Distributed Systems.

[23]  Bo Sheng,et al.  Counting RFID Tags Efficiently and Anonymously , 2010, 2010 Proceedings IEEE INFOCOM.

[24]  Philippe Flajolet,et al.  Loglog Counting of Large Cardinalities (Extended Abstract) , 2003, ESA.

[25]  Jeffrey F. Naughton,et al.  Sampling-Based Estimation of the Number of Distinct Values of an Attribute , 1995, VLDB.

[26]  Yunhao Liu,et al.  Randomizing RFID private authentication , 2009, 2009 IEEE International Conference on Pervasive Computing and Communications.

[27]  Yunhao Liu,et al.  Mining Frequent Trajectory Patterns for Activity Monitoring Using Radio Frequency Tag Arrays , 2012, IEEE Transactions on Parallel and Distributed Systems.

[28]  Lionel M. Ni,et al.  An RF-Based System for Tracking Transceiver-Free Objects , 2007, Fifth Annual IEEE International Conference on Pervasive Computing and Communications (PerCom'07).

[29]  Feng Zhou,et al.  Evaluating and optimizing power consumption of anti-collision protocols for applications in RFID systems , 2004, Proceedings of the 2004 International Symposium on Low Power Electronics and Design (IEEE Cat. No.04TH8758).

[30]  Lei Yang,et al.  Identification-free batch authentication for RFID tags , 2010, The 18th IEEE International Conference on Network Protocols.

[31]  Yunhao Liu,et al.  Refresh: Weak Privacy Model for RFID Systems , 2010, 2010 Proceedings IEEE INFOCOM.

[32]  Klaus Finkenzeller,et al.  RFID Handbook: Radio-Frequency Identification Fundamentals and Applications , 2000 .

[33]  Lixin Gao,et al.  Energy-Aware Tag Anti-Collision Protocols for RFID Systems , 2007, PerCom.

[35]  Bo Sheng,et al.  Efficient Continuous Scanning in RFID Systems , 2010, 2010 Proceedings IEEE INFOCOM.

[36]  Chen Qian,et al.  ASAP: Scalable Identification and Counting for Contactless RFID Systems , 2010, 2010 IEEE 30th International Conference on Distributed Computing Systems.

[37]  Helmut Prodinger,et al.  On the analysis of probabilistic counting , 1990 .

[38]  Donald E. Knuth,et al.  The art of computer programming: sorting and searching (volume 3) , 1973 .

[39]  Lawrence G. Roberts,et al.  ALOHA packet system with and without slots and capture , 1975, CCRV.