Optimization of CCVD synthesis conditions for single-wall carbon nanotubes by statistical design of experiments (DoE)

[1]  M. S. de Vries,et al.  Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls , 1993, Nature.

[2]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[3]  J. Nagy,et al.  Optimization of catalytic production and purification of buckytubes , 1996 .

[4]  J. Nagy,et al.  Catalytic synthesis and purification of carbon nanotubes , 1996 .

[5]  Pulickel M. Ajayan,et al.  Nanometre-size tubes of carbon , 1997 .

[6]  J. Nagy,et al.  Synthesis of single-wall carbon nanotubes by catalytic decomposition of hydrocarbons , 1999 .

[7]  Mauricio Terrones,et al.  Nanotubes: A Revolution in Materials Science and Electronics , 1999 .

[8]  Hiromichi Kataura,et al.  Diameter control of single-walled carbon nanotubes , 2000 .

[9]  Paul L. McEuen,et al.  Single-wall carbon nanotubes , 2000 .

[10]  Janos B. Nagy,et al.  Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method , 2000 .

[11]  I. Kiricsi,et al.  Catalytic synthesis of carbon nanotubes over Co, Fe and Ni containing conventional and sol–gel silica–aluminas , 2000 .

[12]  M. Meyyappan,et al.  Combinatorial Optimization of Heterogeneous Catalysts Used in the Growth of Carbon Nanotubes , 2001 .

[13]  M. Meyyappan,et al.  Carbon Nanotubes by CVD and Applications , 2001 .

[14]  H. Kataura,et al.  Determination of SWCNT diameters from the Raman response of the radial breathing mode , 2001 .

[15]  Thong Ngee Goh,et al.  A pragmatic approach to experimental design in industry , 2001 .

[16]  E. Anglaret,et al.  Phonons in single wall carbon nanotube bundles , 2002 .

[17]  Mica Grujicic,et al.  Optimization of the chemical vapor deposition process for carbon nanotubes fabrication , 2002 .

[18]  M. Prato,et al.  A detailed Raman study on thin single-wall carbon nanotubes prepared by the HiPCO process , 2002 .

[19]  Petr Zamostny,et al.  Identification of kinetic models of heterogeneously catalyzed reactions , 2002 .

[20]  L. Harmon,et al.  Experiment planning for combinatorial materials discovery , 2003 .

[21]  A. Grüneis,et al.  Origin of the fine structure of the Raman D band in single-wall carbon nanotubes. , 2003, Physical review letters.

[22]  Jun Li,et al.  Growth of Carbon Nanotubes: A Combinatorial Method To Study the Effects of Catalysts and Underlayers , 2003 .

[23]  Christopher T. Kingston,et al.  Fabrication of Carbon Nanotubes , 2003 .

[24]  Jun Li,et al.  High throughput methodology for carbon nanomaterials discovery and optimization , 2003 .

[25]  S. Maruyama,et al.  Characterization of single-walled carbon nanotubes catalytically synthesized from alcohol , 2003 .

[26]  P. Nikolaev,et al.  Protocol for the characterization of single-wall carbon nanotube material quality , 2004 .

[27]  H Telg,et al.  Chirality distribution and transition energies of carbon nanotubes. , 2004, Physical review letters.

[28]  Yanhui Yang,et al.  Statistical analysis of synthesis of Co-MCM-41 catalysts for production of aligned single walled carbon nanotubes (SWNT) , 2004 .

[29]  M. Dresselhaus,et al.  Employing Raman spectroscopy to qualitatively evaluate the purity of carbon single-wall nanotube materials. , 2004, Journal of nanoscience and nanotechnology.

[30]  M. Meyyappan,et al.  Combinatorial chips for optimizing the growth and integration of carbon nanofibre based devices , 2003 .

[31]  Chong-Yun Park,et al.  Single-walled carbon nanotubes produced by catalytic chemical vapor deposition of acetylene over Fe–Mo/MgO catalyst , 2004 .

[32]  陈建,et al.  Diameter-Controlled Growth of Carbon Nanotubes Through Pyrolysis of Acetylene Using Rare Earth Alloy as Catalyst in Hydrogen , 2004 .

[33]  K. Hata,et al.  Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes , 2004, Science.

[34]  G. Müller,et al.  Adjustment of the Band Gap Energies of Biostabilized CdS Nanoparticles by Application of Statistical Design of Experiments , 2004 .

[35]  P. Nikolaev Gas-phase production of single-walled carbon nanotubes from carbon monoxide: a review of the hipco process. , 2004, Journal of nanoscience and nanotechnology.

[36]  Interaction between concentric tubes in DWCNTs , 2004, cond-mat/0406670.

[37]  P. Apte,et al.  Application of the Taguchi analytical method for optimization of effective parameters of the chemical vapor deposition process controlling the production of nanotubes/nanobeads. , 2005, Journal of nanoscience and nanotechnology.

[38]  Yoshinori Ando,et al.  Controlling the diameter distribution of carbon nanotubes grown from camphor on a zeolite support , 2005 .

[39]  M. Kalbáč,et al.  In‐Situ Vis–Near‐Infrared and Raman Spectroelectrochemistry of Double‐Walled Carbon Nanotubes , 2005 .

[40]  F. Simon,et al.  Diameter selective reaction processes of single-wall carbon nanotubes , 2004, cond-mat/0403179.

[41]  L. Tapasztó,et al.  Diameter and morphology dependence on experimental conditions of carbon nanotube arrays grown by spray pyrolysis , 2005 .

[42]  Sandip Niyogi,et al.  Comparison of analytical techniques for purity evaluation of single-walled carbon nanotubes. , 2005, Journal of the American Chemical Society.