On the Number of Rows and Columns in Subspace Identification Methods

[1]  Lennart Ljung,et al.  Interpretation of Subspace Methods : Consistency Analysis , 1997 .

[2]  Johan A. K. Suykens,et al.  Identification of stable models in subspace identification by using regularization , 2001, IEEE Trans. Autom. Control..

[3]  Johan A. K. Suykens,et al.  Identification of positive real models in subspace identification by using regularization , 2003, IEEE Trans. Autom. Control..

[4]  Petre Stoica,et al.  Vector ARMA estimation: a reliable subspace approach , 2000, IEEE Trans. Signal Process..

[5]  P. Van Overschee,et al.  Subspace algorithms for the stochastic identification problem , 1991 .

[6]  H. Akaike Markovian Representation of Stochastic Processes by Canonical Variables , 1975 .

[7]  J. Maciejowski Guaranteed stability with subspace methods , 1995 .

[8]  Tony Gustafsson Subspace-based system identification: weighting and pre-filtering of instruments , 2002, Autom..

[9]  B. Moor,et al.  On the Rank Deficiency of the Least Squares Residuals in Subspace Identification , 2000 .

[10]  Torben Knudsen Consistency analysis of subspace identification methods based on a linear regression approach , 2001, Autom..

[11]  Manfred Deistler,et al.  Statistical analysis of novel subspace identification methods , 1996, Signal Process..

[12]  A. Benveniste,et al.  Single sample modal identification of a nonstationary stochastic process , 1985, IEEE Transactions on Automatic Control.

[13]  Dietmar Bauer,et al.  Consistency and asymptotic normality of some subspace algorithms for systems without observed inputs , 1999, Autom..

[14]  Patrick Dewilde,et al.  Subspace model identification Part 1. The output-error state-space model identification class of algorithms , 1992 .

[15]  Dietmar Bauer,et al.  Analysis of the asymptotic properties of the MOESP type of subspace algorithms , 2000, Autom..

[16]  Bo Wahlberg,et al.  On Consistency of Subspace Methods for System Identification , 1998, Autom..

[17]  Y. Baram Realization and reduction of Markovian models from nonstationary data , 1981 .

[18]  Mats Viberg,et al.  Subspace-based methods for the identification of linear time-invariant systems , 1995, Autom..

[19]  Lennart Ljung,et al.  Some facts about the choice of the weighting matrices in Larimore type of subspace algorithms , 2002, Autom..

[20]  Bo Wahlberg,et al.  A linear regression approach to state-space subspace system identification , 1996, Signal Process..

[21]  Anders Lindquist,et al.  Experimental evidence showing that stochastic subspace identification methods may fail 1 1 This rese , 1998 .

[22]  Bo Wahlberg,et al.  Analysis of state space system identification methods based on instrumental variables and subspace fitting , 1997, Autom..

[23]  Anders Lindquist,et al.  Canonical correlation analysis, approximate covariance extension, and identification of stationary time series , 1996, Autom..

[24]  Bhaskar D. Rao,et al.  Statistical analysis of subspace-based estimation of reduced-rank linear regressions , 2002, IEEE Trans. Signal Process..

[25]  K. D. Cock Principal Angles in System Theory, Information Theory and Signal Processing , 2002 .

[26]  T. W. Anderson An Introduction to Multivariate Statistical Analysis , 1959 .