A Hierarchical Geodesic Model for Diffeomorphic Longitudinal Shape Analysis

Hierarchical linear models (HLMs) are a standard approach for analyzing data where individuals are measured repeatedly over time. However, such models are only applicable to longitudinal studies of Euclidean data. In this paper, we propose a novel hierarchical geodesic model (HGM), which generalizes HLMs to the manifold setting. Our proposed model explains the longitudinal trends in shapes represented as elements of the group of diffeomorphisms. The individual level geodesics represent the trajectory of shape changes within individuals. The group level geodesic represents the average trajectory of shape changes for the population. We derive the solution of HGMs on diffeomorphisms to estimate individual level geodesics, the group geodesic, and the residual geodesics. We demonstrate the effectiveness of HGMs for longitudinal analysis of synthetically generated shapes and 3D MRI brain scans.

[1]  Alain Trouvé,et al.  Geodesic Shooting for Computational Anatomy , 2006, Journal of Mathematical Imaging and Vision.

[2]  P. Thomas Fletcher,et al.  A vector momenta formulation of diffeomorphisms for improved geodesic regression and atlas construction , 2013, 2013 IEEE 10th International Symposium on Biomedical Imaging.

[3]  V. Arnold Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits , 1966 .

[4]  P. Fletcher Geodesic Regression on Riemannian Manifolds , 2011 .

[5]  Nicholas Ayache,et al.  Mapping the Effects of Aβ 1 - 42 Levels on the Longitudinal Changes in Healthy Aging: Hierarchical Modeling Based on Stationary Velocity Fields , 2011, MICCAI.

[6]  Mark Jenkinson,et al.  Non-local Shape Descriptor: A New Similarity Metric for Deformable Multi-modal Registration , 2011, MICCAI.

[7]  P. Thomas Fletcher,et al.  Sasaki metrics for analysis of longitudinal data on manifolds , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Michael I. Miller,et al.  Evolutions equations in computational anatomy , 2009, NeuroImage.

[9]  Guang-Zhong Yang,et al.  Medical Image Computing and Computer-Assisted Intervention - MICCAI 2009, 12th International Conference, London, UK, September 20-24, 2009, Proceedings, Part II , 2009, MICCAI.

[10]  Guido Gerig,et al.  Analysis of Longitudinal Shape Variability via Subject Specific Growth Modeling , 2012, MICCAI.

[11]  François-Xavier Vialard,et al.  Geodesic Regression for Image Time-Series , 2011, MICCAI.

[12]  Alain Trouvé,et al.  Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms , 2005, International Journal of Computer Vision.

[13]  Hervé Delingette,et al.  Medical Image Computing and Computer-Assisted Intervention – MICCAI 2012 , 2012, Lecture Notes in Computer Science.

[14]  Guido Gerig,et al.  Spatiotemporal Atlas Estimation for Developmental Delay Detection in Longitudinal Datasets , 2009, MICCAI.

[15]  J. Ware,et al.  Random-effects models for longitudinal data. , 1982, Biometrics.