Quasirandom rumor spreading

We propose and analyse a quasirandom analogue to the classical push model for disseminating information in networks ("randomized rumor spreading"). In the classical model, in each round each informed node chooses a neighbor at random and informs it. Results of Frieze and Grimmett (Discrete Appl. Math. 1985) show that this simple protocol succeeds in spreading a rumor from one node of a complete graph to all others within O(log n) rounds. For the network being a hypercube or a random graph G(n, p) with p ≥ (1 +e)(log n)/n, also O(log n) rounds suffice (Feige, Peleg. Raghavan, and Upfal, Random Struct. Algorithms 1990). In the quasirandom model, we assume that each node has a (cyclic) list of its neighbors. Once informed, it starts at a random position of the list, but from then on informs its neighbors in the order of the list. Surprisingly, irrespective of the orders of the lists, the above mentioned bounds still hold. In addition, we also show a O(log n) bound for sparsely connected random graphs G(n, p) with p = (log n + f(n))/n, where f(n) → ∞ and f(n) = O(log log n). Here, the classical model needs Θ(log2(n)) rounds. Hence the quasirandom model achieves similar or better broadcasting times with a greatly reduced use of random bits.

[1]  R. M. Tanner Explicit Concentrators from Generalized N-Gons , 1984 .

[2]  Alan M. Frieze,et al.  The shortest-path problem for graphs with random arc-lengths , 1985, Discret. Appl. Math..

[3]  Scott Shenker,et al.  Epidemic algorithms for replicated database maintenance , 1988, OPSR.

[4]  B. Pittel On spreading a rumor , 1987 .

[5]  Doug Terry,et al.  Epidemic algorithms for replicated database maintenance , 1988, OPSR.

[6]  Arthur L. Liestman,et al.  A survey of gossiping and broadcasting in communication networks , 1988, Networks.

[7]  Colin McDiarmid,et al.  Surveys in Combinatorics, 1989: On the method of bounded differences , 1989 .

[8]  Eli Upfal,et al.  Randomized Broadcast in Networks , 1990, Random Struct. Algorithms.

[9]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[10]  James Allen Fill,et al.  PERCOLATION, FIRST-PASSAGE PERCOLATION, AND COVERING TIMES FOR RICHARDSON'S MODEL ON THE n-CUBE (Short title: PERCOLATION ON THE CUBE) , 1993 .

[11]  Alan M. Frieze,et al.  Near-perfect Token Distribution , 1994, Random Struct. Algorithms.

[12]  Alan M. Frieze,et al.  Optimal construction of edge-disjoint paths in random graphs , 1994, SODA '94.

[13]  Dhar,et al.  Eulerian Walkers as a Model of Self-Organized Criticality. , 1996, Physical review letters.

[14]  Krzysztof Diks,et al.  Broadcasting with universal lists , 1996 .

[15]  Israel A. Wagner,et al.  Smell as a Computational Resource - A Lesson We Can Learn from the Ant , 1996, ISTCS.

[16]  Edward F. Grove,et al.  Simple Randomized Mergesort on Parallel Disks , 1997, Parallel Comput..

[17]  Yoshiharu Kohayakawa,et al.  On Richardsons model on the hypercube , 1997 .

[18]  Yuval Rabani,et al.  Local divergence of Markov chains and the analysis of iterative load-balancing schemes , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[19]  N. Wormald,et al.  Models of the , 2010 .

[20]  Israel A. Wagner,et al.  Distributed covering by ant-robots using evaporating traces , 1999, IEEE Trans. Robotics Autom..

[21]  Nicholas C. Wormald,et al.  Generating Random Regular Graphs Quickly , 1999, Combinatorics, Probability and Computing.

[22]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[23]  Richard M. Karp,et al.  Randomized rumor spreading , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[24]  Béla Bollobás,et al.  The degree sequence of a scale‐free random graph process , 2001, Random Struct. Algorithms.

[25]  F. Chung,et al.  Connected Components in Random Graphs with Given Expected Degree Sequences , 2002 .

[26]  Johannes Gehrke,et al.  Gossip-based computation of aggregate information , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[27]  Peter Winkler,et al.  On Playing Golf with Two Balls , 2003, SIAM J. Discret. Math..

[28]  Martin E. Dyer,et al.  Sampling regular graphs and a peer-to-peer network , 2005, SODA '05.

[29]  Eli Upfal,et al.  Probability and Computing: Randomized Algorithms and Probabilistic Analysis , 2005 .

[30]  Michael Kleber Goldbug variations , 2005 .

[31]  Kyung-Yong Chwa,et al.  Optimal broadcasting with universal lists based on competitive analysis , 2005 .

[32]  Devavrat Shah,et al.  Computing separable functions via gossip , 2005, PODC '06.

[33]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .

[34]  Joshua N. Cooper,et al.  Simulating a Random Walk with Constant Error , 2004, Combinatorics, Probability and Computing.

[35]  Stephen P. Boyd,et al.  Randomized gossip algorithms , 2006, IEEE Transactions on Information Theory.

[36]  Christian Schindelhauer,et al.  Distributed random digraph transformations for peer-to-peer networks , 2006, SPAA '06.

[37]  Robert Elsässer,et al.  On the communication complexity of randomized broadcasting in random-like graphs , 2006, SPAA '06.

[38]  Colin Cooper,et al.  The cover time of sparse random graphs , 2007 .

[39]  Joshua N. Cooper,et al.  Deterministic random walks on the integers , 2007, Eur. J. Comb..

[40]  Thomas Sauerwald,et al.  The power of memory in randomized broadcasting , 2008, SODA '08.

[41]  Thomas Sauerwald,et al.  On Mixing and Edge Expansion Properties in Randomized Broadcasting , 2007, Algorithmica.

[42]  Thomas Sauerwald,et al.  Quasirandom rumor spreading: An experimental analysis , 2008, JEAL.

[43]  Alessandro Panconesi,et al.  Concentration of Measure for the Analysis of Randomized Algorithms , 2009 .

[44]  Thomas Sauerwald,et al.  On the runtime and robustness of randomized broadcasting , 2009, Theor. Comput. Sci..

[45]  Konstantinos Panagiotou,et al.  Tight Bounds for Quasirandom Rumor Spreading , 2009, Electron. J. Comb..

[46]  Thomas Sauerwald,et al.  Quasirandom Rumor Spreading: Expanders, Push vs. Pull, and Robustness , 2009, ICALP.

[47]  Anna Huber,et al.  Quasirandom Rumor Spreading on the Complete Graph Is as Fast as Randomized Rumor Spreading , 2009, SIAM J. Discret. Math..

[48]  Tobias Friedrich,et al.  Deterministic Random Walks on the Two-Dimensional Grid , 2009, Comb. Probab. Comput..

[49]  Konstantinos Panagiotou,et al.  Reliable Broadcasting in Random Networks and the Effect of Density , 2010, 2010 Proceedings IEEE INFOCOM.

[50]  Silvio Lattanzi,et al.  Rumour spreading and graph conductance , 2010, SODA '10.

[51]  Thomas Sauerwald,et al.  Quasirandom load balancing , 2010, SODA '10.