Adaptive Neural Networks for Robust Estimation of Signal Parameters

Abstract In many applications, very fast methods are required for estimating of parameters of harmonic signals distorted by noise. Most of the known digital algorithms are not fully parallel, so that the speed of processing is quite limited. In this paper new parallel algorithms are proposed, which can be implemented by analogue adaptive circuits employing some neural networks principles. Algorithms based on the least-squares (LS) and the total least-squares (TLS) criteria are developed and compared. Extensive computer simulations confirm the validity and performance of the proposed algorithms.